login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001941
Absolute values of coefficients of an elliptic function.
(Formerly M4411 N1864)
6
1, 7, 35, 140, 483, 1498, 4277, 11425, 28889, 69734, 161735, 362271, 786877, 1662927, 3428770, 6913760, 13660346, 26492361, 50504755, 94766875, 175221109, 319564227, 575387295, 1023624280, 1800577849, 3133695747, 5399228149, 9214458260, 15584195428
OFFSET
0,2
REFERENCES
A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. Cayley, A memoir on the transformation of elliptic functions, Philosophical Transactions of the Royal Society of London (1874): 397-456; Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, included in Vol. 9. [Annotated scan of pages 126-129]
FORMULA
G.f.: Product ( 1 - x^k )^-c(k), c(k) = 7, 7, 7, 0, 7, 7, 7, 0, ....
a(n) ~ 7^(1/4) * exp(sqrt(7*n/2)*Pi) / (256*2^(3/4)*n^(3/4)). - Vaclav Kotesovec, Nov 15 2017
G.f.: Product_{k>=1} ((1 + x^(2*k))/(1 - x^(2*k-1)))^7. - Ilya Gutkovskiy, Dec 04 2017
MATHEMATICA
nn = 4*10; b = Flatten[Table[{7, 7, 7, 0}, {nn/4}]]; CoefficientList[x*Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x] (* T. D. Noe, Aug 17 2012 *)
nmax = 40; CoefficientList[Series[Product[((1 - x^(4*k)) / (1 - x^k))^7, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 15 2017 *)
KEYWORD
nonn
STATUS
approved