login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327385
Number of colored integer partitions of n such that seven colors are used and parts differ by size or by color.
6
1, 7, 35, 133, 434, 1253, 3311, 8135, 18851, 41573, 87920, 179305, 354270, 680631, 1275430, 2337097, 4196717, 7398699, 12826324, 21895160, 36848119, 61201709, 100415175, 162886318, 261422357, 415397836, 653899589, 1020282424, 1578729491, 2423647471, 3693050242
OFFSET
7,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 7..10000 (terms n = 5001..9000 from Vaclav Kotesovec)
FORMULA
a(n) ~ exp(Pi*sqrt(7*n/3)) * 7^(1/4) / (32 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 16 2019
G.f.: (-1 + Product_{k>=1} (1 + x^k))^7. - Ilya Gutkovskiy, Jan 31 2021
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(7):
seq(a(n), n=7..45);
MATHEMATICA
A327385[n_] := SeriesCoefficient[(Product[(1 + x^k), {k, 1, n}] - 1)^7, {x, 0, n}]; Table[A327385[n], {n, 7, 37}] (* Robert P. P. McKone, Jan 31 2021 *)
CROSSREFS
Column k=7 of A308680.
Sequence in context: A328019 A327243 A059595 * A344101 A001941 A320050
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 03 2019
STATUS
approved