login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327243
a(n) = n! * Sum_{d|n} (-1)^(n - d) / (n/d)!.
3
1, 1, 7, 35, 121, 479, 5041, 62159, 423361, 1844639, 39916801, 779042879, 6227020801, 43606442879, 1536517382401, 32256486662399, 355687428096001, 4259374594675199, 121645100408832001, 3568256949101644799, 59616236292028416001, 562000392047391897599
OFFSET
1,3
FORMULA
E.g.f.: Sum_{k>=1} -(-x)^k / (k! * (1 + (-x)^k)).
E.g.f.: Sum_{k>=1} (-1)^k * (exp((-x)^k) - 1). [corrected by Ilya Gutkovskiy, May 14 2022]
MATHEMATICA
a[n_] := n! Sum[(-1)^(n - d)/(n/d)!, {d, Divisors[n]}]; Table[a[n], {n, 1, 22}]
nmax = 22; CoefficientList[Series[Sum[-(-x)^k/(k! (1 + (-x)^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
PROG
(PARI) a(n) = {n!*sumdiv(n, d, (-1)^(n - d) / (n/d)!)} \\ Andrew Howroyd, Sep 14 2019
(Magma) [Factorial(n)*(&+[(-1)^(n-d)/Factorial(n div d):d in Divisors(n)]):n in [1..22]]; // Marius A. Burtea, Sep 14 2019
CROSSREFS
Sequence in context: A124090 A250284 A328019 * A059595 A327385 A344101
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 14 2019
STATUS
approved