

A086817


a(n) is the number of terms in the expansion of (x+yz)*(x^2+y^2z^2)*(x^3+y^3z^3)*...*(x^n+y^nz^n).


3



3, 9, 22, 48, 102, 182, 328, 566, 910, 1396, 2025, 2882, 3976, 5304, 7002, 9071, 11475, 14444, 17886, 21896, 26531, 31880, 37947, 44899, 52657, 61500, 71406, 82383, 94592, 108097, 123017, 139401, 157439, 177134, 198634, 221962, 247378, 274767, 304483, 336533, 371083, 408168, 447944, 490614, 536208
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..45.


MAPLE

P:= 1;
for n from 1 to 90 do
P:= expand(P*(x^n+y^nz^n));
A[n]:= nops(P);
od:
seq(A[n], n=1..90); # Robert Israel, Apr 14 2017


MATHEMATICA

Table[Length[Expand[Times@@Table[x^n+y^nz^n, {n, i}]]], {i, 50}] (* Harvey P. Dale, Oct 02 2018 *)


CROSSREFS

Cf. A086796.
Sequence in context: A192389 A187053 A001937 * A247188 A000715 A260545
Adjacent sequences: A086814 A086815 A086816 * A086818 A086819 A086820


KEYWORD

nonn


AUTHOR

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 06 2003


EXTENSIONS

a(12)a(45) from Robert Israel, Apr 14 2017


STATUS

approved



