login
A260545
Expansion of phi(-x^6)^2 / (chi(x) * phi(-x)^2) in powers of x where phi(), chi() are Ramanujan theta functions.
1
1, 3, 9, 22, 50, 105, 208, 395, 722, 1280, 2210, 3728, 6163, 10006, 15986, 25169, 39104, 60022, 91106, 136870, 203664, 300368, 439321, 637568, 918530, 1314214, 1868153, 2639276, 3706994, 5177868, 7194304, 9945872, 13683986, 18740880, 25554084, 34697883
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/24) * eta(q^4) * eta(q^6)^4 / (eta(q)^3 * eta(q^12)^2) in powers of q.
Euler transform of period 12 sequence [ 3, 3, 3, 2, 3, -1, 3, 2, 3, 3, 3, 0, ...].
a(n) = A001935(3*n).
EXAMPLE
G.f. = 1 + 3*x + 9*x^2 + 22*x^3 + 50*x^4 + 105*x^5 + 208*x^6 + 395*x^7 + ...
G.f. = q + 3*q^25 + 9*q^49 + 22*q^73 + 50*q^97 + 105*q^121 + 208*q^145 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^6]^2 QPochhammer[ x^4] / QPochhammer[ x]^3, {x, 0, n}];
a[ n_] := SeriesCoefficient[ QPochhammer[ x, -x] EllipticTheta[ 4, 0, x^6]^2 / EllipticTheta[ 4, 0, x]^2, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A) * eta(x^6 + A)^4 / (eta(x + A)^3 * eta(x^12 + A)^2), n))};
CROSSREFS
Cf. A001935.
Sequence in context: A086817 A247188 A000715 * A034505 A143099 A365664
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 28 2015
STATUS
approved