OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/24) * eta(q^4) * eta(q^6)^4 / (eta(q)^3 * eta(q^12)^2) in powers of q.
Euler transform of period 12 sequence [ 3, 3, 3, 2, 3, -1, 3, 2, 3, 3, 3, 0, ...].
a(n) = A001935(3*n).
EXAMPLE
G.f. = 1 + 3*x + 9*x^2 + 22*x^3 + 50*x^4 + 105*x^5 + 208*x^6 + 395*x^7 + ...
G.f. = q + 3*q^25 + 9*q^49 + 22*q^73 + 50*q^97 + 105*q^121 + 208*q^145 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^6]^2 QPochhammer[ x^4] / QPochhammer[ x]^3, {x, 0, n}];
a[ n_] := SeriesCoefficient[ QPochhammer[ x, -x] EllipticTheta[ 4, 0, x^6]^2 / EllipticTheta[ 4, 0, x]^2, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A) * eta(x^6 + A)^4 / (eta(x + A)^3 * eta(x^12 + A)^2), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 28 2015
STATUS
approved