login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260546
Expansion of phi(-x^3) * psi(-x^3) / phi(-x)^2 in powers of x where phi(), psi() are Ramanujan theta functions
1
1, 4, 12, 29, 64, 132, 258, 484, 876, 1539, 2636, 4416, 7256, 11716, 18624, 29190, 45164, 69060, 104457, 156416, 232044, 341256, 497804, 720648, 1035792, 1478720, 2097612, 2957590, 4146284, 5781120, 8018821, 11067748, 15203904, 20791590, 28310028, 38387556
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-3/8) * eta(q^2)^2 * eta(q^3)^3 * eta(q^12) / (eta(q)^4 * eta(q^6)^2) in powers of q.
Euler transform of period 12 sequence [ 4, 2, 1, 2, 4, 1, 4, 2, 1, 2, 4, 0, ...].
a(n) = A001935(3*n + 1).
a(n) ~ exp(Pi*sqrt(3*n/2)) / (2^(11/4) * 3^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 15 2017
EXAMPLE
G.f. = 1 + 4*x + 12*x^2 + 29*x^3 + 64*x^4 + 132*x^5 + 258*x^6 + 484*x^7 + ...
G.f. = q^3 + 4*q^11 + 12*q^19 + 29*q^27 + 64*q^35 + 132*q^43 + 258*q^51 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^3]^3 / (EllipticTheta[ 4, 0, x]^2 EllipticTheta[ 4, 0, x^6]), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A)^3 * eta(x^12 + A) / (eta(x + A)^4 * eta(x^6 + A)^2), n))};
CROSSREFS
Cf. A001935.
Sequence in context: A128563 A227085 A192978 * A062421 A036889 A036895
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 28 2015
STATUS
approved