OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-17/24) * eta(q^2) * eta(q^6) * eta(q^12) / eta(q)^3 in powers of q.
Euler transform of period 12 sequence [ 3, 2, 3, 2, 3, 1, 3, 2, 3, 2, 3, 0, ...].
2 * a(n) = A001935(3*n + 2).
a(n) ~ exp(Pi*sqrt(3*n/2)) / (2^(15/4) * 3^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 15 2017
EXAMPLE
G.f. = 1 + 3*x + 8*x^2 + 19*x^3 + 41*x^4 + 83*x^5 + 160*x^6 + 296*x^7 + ...
G.f. = q^17 + 3*q^41 + 8*q^65 + 19*q^89 + 41*q^113 + 83*q^137 + 160*q^161 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^6] QPochhammer[ x^12] / QPochhammer[ x]^3, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^6 + A) * eta(x^12 + A) / eta(x + A)^3, n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 28 2015
STATUS
approved