login
A328540
Number of broken 2-diamond partitions of n.
0
1, 3, 8, 19, 41, 82, 158, 291, 519, 901, 1527, 2533, 4128, 6615, 10445, 16273, 25044, 38108, 57393, 85606, 126553, 185533, 269886, 389719, 558900, 796317, 1127628, 1587498, 2222571, 3095346, 4289282, 5915331, 8120558, 11099168, 15106787
OFFSET
0,2
REFERENCES
Andrews, G.E., Paule, P.: MacMahon’s partition analysis XI: broken diamonds and modular forms. Acta Arith. 126, 281-294 (2007)
Cui, Su-Ping, and Nancy SS Gu. "Congruences for broken 3-diamond and 7 dots bracelet partitions." The Ramanujan Journal 35.1 (2014): 165-178.
FORMULA
We write (a;q)_M as Q(a,q,M). The g.f. for the number of broken k-diamond partitions of n is Q(-q,q,oo)/( Q(q,q,oo)^2 * Q(-q^(2*k+1),q^(2*k+1),oo) ).
MAPLE
Q := (a, q, M) -> mul(1-a*q^r, r=0..M-1);
Deltak := (k, M) -> Q(-q, q, M)/( Q(q, q, M)^2 * Q(-q^(2*k+1), q^(2*k+1), M) );
seriestolist(series(Deltak(2, 64), q, 40));
CROSSREFS
Sequence in context: A007326 A136396 A006380 * A260547 A328541 A182818
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 19 2019
STATUS
approved