login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328540
Number of broken 2-diamond partitions of n.
0
1, 3, 8, 19, 41, 82, 158, 291, 519, 901, 1527, 2533, 4128, 6615, 10445, 16273, 25044, 38108, 57393, 85606, 126553, 185533, 269886, 389719, 558900, 796317, 1127628, 1587498, 2222571, 3095346, 4289282, 5915331, 8120558, 11099168, 15106787
OFFSET
0,2
REFERENCES
Andrews, G.E., Paule, P.: MacMahon’s partition analysis XI: broken diamonds and modular forms. Acta Arith. 126, 281-294 (2007)
Cui, Su-Ping, and Nancy SS Gu. "Congruences for broken 3-diamond and 7 dots bracelet partitions." The Ramanujan Journal 35.1 (2014): 165-178.
FORMULA
We write (a;q)_M as Q(a,q,M). The g.f. for the number of broken k-diamond partitions of n is Q(-q,q,oo)/( Q(q,q,oo)^2 * Q(-q^(2*k+1),q^(2*k+1),oo) ).
MAPLE
Q := (a, q, M) -> mul(1-a*q^r, r=0..M-1);
Deltak := (k, M) -> Q(-q, q, M)/( Q(q, q, M)^2 * Q(-q^(2*k+1), q^(2*k+1), M) );
seriestolist(series(Deltak(2, 64), q, 40));
CROSSREFS
Sequence in context: A007326 A136396 A006380 * A260547 A328541 A182818
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 19 2019
STATUS
approved