login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000715
Number of partitions of n, with three kinds of 1,2 and 3 and two kinds of 4,5,6,....
(Formerly M2786 N1121)
2
1, 3, 9, 22, 50, 104, 208, 394, 724, 1286, 2229, 3769, 6253, 10176, 16303, 25723, 40055, 61588, 93647, 140875, 209889, 309846, 453565, 658627, 949310, 1358589, 1931464, 2728547, 3831654, 5350119, 7430158, 10265669, 14113795, 19313168, 26309405, 35685523
OFFSET
0,2
COMMENTS
Convolution of A000712 and A001399. - Vaclav Kotesovec, Aug 18 2015
REFERENCES
H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 122.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. J. A. Sloane, Transforms
FORMULA
EULER transform of 3, 3, 3, 2, 2, 2, 2, 2, ...
G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*Product_{k>=1}(1-x^k)^2). - Emeric Deutsch, Apr 17 2006
a(n) ~ exp(2*Pi*sqrt(n/3)) * n^(1/4) / (8 * 3^(1/4) * Pi^3). - Vaclav Kotesovec, Aug 18 2015
EXAMPLE
a(2)=9 because we have 2, 2', 2", 1+1, 1'+1', 1"+1", 1+1', 1+1", 1'+1".
MAPLE
g:=1/((1-x)*(1-x^2)*(1-x^3)*product((1-x^k)^2, k=1..40)): gser:=series(g, x=0, 40): seq(coeff(gser, x, n), n=0..31); # Emeric Deutsch, Apr 17 2006
# second Maple program
a:= proc(n) a(n):= `if`(n=0, 1, add(add(d*`if`(d<4, 3, 2), d=numtheory [divisors](j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..50); # Alois P. Heinz, Sep 25 2012
MATHEMATICA
nn=25; p=Product[1/(1- x^i)^2, {i, 1, nn}]; CoefficientList[Series[p /(1-x)/(1-x^2)/(1-x^3), {x, 0, nn}], x] (* Geoffrey Critzer, Sep 25 2012 *)
CROSSREFS
Sequence in context: A001937 A086817 A247188 * A260545 A034505 A143099
KEYWORD
nonn
EXTENSIONS
Extended with formula from Christian G. Bower, Apr 15 1998
STATUS
approved