OFFSET
0,2
COMMENTS
REFERENCES
H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 122.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000
N. J. A. Sloane, Transforms
FORMULA
EULER transform of 3, 3, 3, 2, 2, 2, 2, 2, ...
G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*Product_{k>=1}(1-x^k)^2). - Emeric Deutsch, Apr 17 2006
a(n) ~ exp(2*Pi*sqrt(n/3)) * n^(1/4) / (8 * 3^(1/4) * Pi^3). - Vaclav Kotesovec, Aug 18 2015
EXAMPLE
a(2)=9 because we have 2, 2', 2", 1+1, 1'+1', 1"+1", 1+1', 1+1", 1'+1".
MAPLE
g:=1/((1-x)*(1-x^2)*(1-x^3)*product((1-x^k)^2, k=1..40)): gser:=series(g, x=0, 40): seq(coeff(gser, x, n), n=0..31); # Emeric Deutsch, Apr 17 2006
# second Maple program
a:= proc(n) a(n):= `if`(n=0, 1, add(add(d*`if`(d<4, 3, 2), d=numtheory [divisors](j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..50); # Alois P. Heinz, Sep 25 2012
MATHEMATICA
nn=25; p=Product[1/(1- x^i)^2, {i, 1, nn}]; CoefficientList[Series[p /(1-x)/(1-x^2)/(1-x^3), {x, 0, nn}], x] (* Geoffrey Critzer, Sep 25 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended with formula from Christian G. Bower, Apr 15 1998
STATUS
approved