login
A000714
Number of partitions of n, with three kinds of 1 and 2 and two kinds of 3,4,5,....
(Formerly M2777 N1117)
1
1, 3, 9, 21, 47, 95, 186, 344, 620, 1078, 1835, 3045, 4967, 7947, 12534, 19470, 29879, 45285, 67924, 100820, 148301, 216199, 312690, 448738, 639464, 905024, 1272837, 1779237, 2473065, 3418655, 4701611, 6434015, 8763676
OFFSET
0,2
COMMENTS
Convolution of A000712 and A008619. - Vaclav Kotesovec, Aug 18 2015
REFERENCES
H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 122.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. Doslic, Kepler-Bouwkamp Radius of Combinatorial Sequences, Journal of Integer Sequences, Vol. 17, 2014, #14.11.3.
N. J. A. Sloane, Transforms
FORMULA
EULER transform of 3, 3, 2, 2, 2, 2, 2, 2, ...
G.f.: 1/((1-x)*(1-x^2)*Product_{k>=1} (1 - x^k)^2). - Emeric Deutsch, Apr 17 2006
a(n) ~ 3^(1/4) * exp(2*Pi*sqrt(n/3)) / (8 * Pi^2 * n^(1/4)). - Vaclav Kotesovec, Aug 18 2015
EXAMPLE
a(2)=9 because we have 2, 2', 2", 1+1, 1'+1', 1"+1", 1+1', 1+1", 1'+1".
MAPLE
g:=1/((1-x)*(1-x^2)*product((1-x^k)^2, k=1..40)): gser:=series(g, x=0, 50): seq(coeff(gser, x, n), n=0..32); # Emeric Deutsch, Apr 17 2006
MATHEMATICA
p=Product[1/(1-x^i), {i, 1, 20}]; CoefficientList[Series[p^2/(1 - x)/(1 - x^2), {x, 0, 20}], x] (* Geoffrey Critzer, Nov 28 2011 *)
CROSSREFS
Sequence in context: A141156 A262197 A014286 * A267226 A273845 A090984
KEYWORD
nonn
EXTENSIONS
Extended with formula from Christian G. Bower, Apr 15 1998
STATUS
approved