OFFSET
0,2
COMMENTS
REFERENCES
H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 122.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..2000
T. Doslic, Kepler-Bouwkamp Radius of Combinatorial Sequences, Journal of Integer Sequences, Vol. 17, 2014, #14.11.3.
N. J. A. Sloane, Transforms
FORMULA
EULER transform of 3, 3, 2, 2, 2, 2, 2, 2, ...
G.f.: 1/((1-x)*(1-x^2)*Product_{k>=1} (1 - x^k)^2). - Emeric Deutsch, Apr 17 2006
a(n) ~ 3^(1/4) * exp(2*Pi*sqrt(n/3)) / (8 * Pi^2 * n^(1/4)). - Vaclav Kotesovec, Aug 18 2015
EXAMPLE
a(2)=9 because we have 2, 2', 2", 1+1, 1'+1', 1"+1", 1+1', 1+1", 1'+1".
MAPLE
g:=1/((1-x)*(1-x^2)*product((1-x^k)^2, k=1..40)): gser:=series(g, x=0, 50): seq(coeff(gser, x, n), n=0..32); # Emeric Deutsch, Apr 17 2006
MATHEMATICA
p=Product[1/(1-x^i), {i, 1, 20}]; CoefficientList[Series[p^2/(1 - x)/(1 - x^2), {x, 0, 20}], x] (* Geoffrey Critzer, Nov 28 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended with formula from Christian G. Bower, Apr 15 1998
STATUS
approved