Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2777 N1117 #35 Feb 04 2022 02:01:48
%S 1,3,9,21,47,95,186,344,620,1078,1835,3045,4967,7947,12534,19470,
%T 29879,45285,67924,100820,148301,216199,312690,448738,639464,905024,
%U 1272837,1779237,2473065,3418655,4701611,6434015,8763676
%N Number of partitions of n, with three kinds of 1 and 2 and two kinds of 3,4,5,....
%C Convolution of A000712 and A008619. - _Vaclav Kotesovec_, Aug 18 2015
%D H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 122.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Vaclav Kotesovec, <a href="/A000714/b000714.txt">Table of n, a(n) for n = 0..2000</a>
%H T. Doslic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Doslic/doslic3.html">Kepler-Bouwkamp Radius of Combinatorial Sequences</a>, Journal of Integer Sequences, Vol. 17, 2014, #14.11.3.
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F EULER transform of 3, 3, 2, 2, 2, 2, 2, 2, ...
%F G.f.: 1/((1-x)*(1-x^2)*Product_{k>=1} (1 - x^k)^2). - _Emeric Deutsch_, Apr 17 2006
%F a(n) ~ 3^(1/4) * exp(2*Pi*sqrt(n/3)) / (8 * Pi^2 * n^(1/4)). - _Vaclav Kotesovec_, Aug 18 2015
%e a(2)=9 because we have 2, 2', 2", 1+1, 1'+1', 1"+1", 1+1', 1+1", 1'+1".
%p g:=1/((1-x)*(1-x^2)*product((1-x^k)^2,k=1..40)): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=0..32); # _Emeric Deutsch_, Apr 17 2006
%t p=Product[1/(1-x^i),{i,1,20}];CoefficientList[Series[p^2/(1 - x)/(1 - x^2), {x, 0, 20}], x] (* _Geoffrey Critzer_, Nov 28 2011 *)
%K nonn
%O 0,2
%A _N. J. A. Sloane_
%E Extended with formula from _Christian G. Bower_, Apr 15 1998