The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000716 Number of partitions of n into parts of 3 kinds. (Formerly M2788 N1123) 17
 1, 3, 9, 22, 51, 108, 221, 429, 810, 1479, 2640, 4599, 7868, 13209, 21843, 35581, 57222, 90882, 142769, 221910, 341649, 521196, 788460, 1183221, 1762462, 2606604, 3829437, 5590110, 8111346, 11701998, 16790136, 23964594, 34034391, 48104069, 67679109, 94800537, 132230021, 183686994, 254170332 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A000712: (1, 2, 5, 10, 20, 36, ...) = A000716 convolved with A010815. - Gary W. Adamson, Oct 26 2008 It appears that the partial sums give A210843. - Omar E. Pol, Jun 18 2012 REFERENCES H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 122. Moreno, Carlos J., Partitions, congruences and Kac-Moody Lie algebras. Preprint, 37pp., no date. See Table I. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 (first 501 terms from T. D. Noe) Roland Bacher, P. De La Harpe, Conjugacy growth series of some infinitely generated groups, 2016, hal-01285685v2. Victor J. W. Guo and Jiang Zeng, Two truncated identities of Gauss, arXiv 1205.4340 [math.CO], 2012. - N. J. A. Sloane, Oct 10 2012 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 391 Vladimir P. Kostov, Asymptotic expansions of zeros of a partial theta function, arXiv:1504.00883 [math.CA], 2015. V. P. Kostov, Stabilization of the asymptotic expansions of the zeros of a partial theta function, arXiv preprint arXiv:1510.02584 [math.CA], 2015. Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 8. P. Nataf, M. Lajkó, A. Wietek, K. Penc, F. Mila, A. M. Läuchli, Chiral spin liquids in triangular lattice SU (N) fermionic Mott insulators with artificial gauge fields, arXiv preprint arXiv:1601.00958 [cond-mat.quant-gas], 2016. N. J. A. Sloane, Transforms FORMULA G.f.: Product_{m>=1} 1/(1-x^m)^3. EULER transform of 3, 3, 3, 3, 3, 3, 3, 3, ... a(0)=1, a(n) = 1/n*Sum_{k=0..n-1} 3*a(k)*sigma_1(n-k). - Joerg Arndt, Feb 05 2011 a(n) ~ exp(Pi * sqrt(2*n)) / (8 * sqrt(2) * n^(3/2)) * (1 - (3/Pi + Pi/8) / sqrt(2*n)). - Vaclav Kotesovec, Feb 28 2015, extended Jan 16 2017 G.f.: exp(3*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018 MAPLE with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*3, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, May 20 2013 MATHEMATICA a = 1; a[n_] := a[n] = 1/n*Sum[3*a[k]*DivisorSigma[1, n-k], {k, 0, n-1}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 03 2014, after Joerg Arndt *) (1/QPochhammer[q]^3 + O[q]^40)[] (* Vladimir Reshetnikov, Nov 21 2016 *) PROG (PARI) Vec(1/eta('x+O('x^66))^3) \\ Joerg Arndt, Apr 28 2013 CROSSREFS Cf. A000712, A000713, A010815. Column 3 of A144064. Sequence in context: A160526 A121589 A227454 * A001628 A099166 A222083 Adjacent sequences:  A000713 A000714 A000715 * A000717 A000718 A000719 KEYWORD nonn AUTHOR EXTENSIONS Extended with formula from Christian G. Bower, Apr 15 1998 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 6 08:22 EDT 2020. Contains 335476 sequences. (Running on oeis4.)