login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121589
Series expansion of (eta(q^9) / eta(q))^3 in powers of q.
6
1, 3, 9, 22, 51, 108, 221, 429, 810, 1476, 2631, 4572, 7802, 13056, 21519, 34918, 55935, 88452, 138332, 213990, 327852, 497592, 748833, 1117692, 1655719, 2434938, 3556791, 5161808, 7445631, 10677096, 15226658, 21599469, 30485268, 42817788
OFFSET
1,2
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Kevin Acres, David Broadhurst, Eta quotients and Rademacher sums, arXiv:1810.07478 [math.NT], 2018. See Table 1 p. 10.
FORMULA
Euler transform of period 9 sequence [3, 3, 3, 3, 3, 3, 3, 3, 0, ...].
G.f.: x * (Product_{k>0} (1 - x^(9*k) / (1 - x^k))^3.
Expansion of c(q^3) / (3 * b(q)) = (c(q) / (3 * b(q^3))^3 in powers of q where b(), c() are cubic AGM functions.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u - v^2) * (u^2 - v) - 2 * u * v * ( 3 * (u + v) + 13 * u * v ).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u^3 - v * (1 + 9 * v + 27 * v^2) * (1 + 9 * u + 27 * u^2).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1 * u2 - (1 + 3 * (u1 + u2)) * (u3 + u6 + 9 * u3 * u6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = (1/27) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A131986.
a(n) ~ exp(4*Pi*sqrt(n)/3) / (27 * sqrt(6) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
a(1) = 1, a(n) = (3/(n-1))*Sum_{k=1..n-1} A116607(k)*a(n-k) for n > 1. - Seiichi Manyama, Apr 01 2017
Convolution inverse of A131986. Convolution cube of A104502. - Michael Somos, Nov 02 2017
EXAMPLE
G.f. = q + 3*q^2 + 9*q^3 + 22*q^4 + 51*q^5 + 108*q^6 + 221*q^7 + 429*q^8 + ...
MAPLE
N:= 100: # to get a(1)..a(N)
S:= series(q*Product(1-q^(9*k), k=1..N/9)/Product((1-q^k)^3, k=1..N), q, N+1):
seq(coeff(S, q, n), n=1..N); # Robert Israel, Nov 02 2017
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[((1-x^(9*k))/(1-x^k))^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
QP = QPochhammer; s = (QP[q^9]/QP[q])^3 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^9] / QPochhammer[ q])^3, {q, 0, n}]; (* Michael Somos, Nov 02 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^9 + A) / eta(x + A))^3, n))};
CROSSREFS
Sequence in context: A278668 A365665 A160526 * A227454 A000716 A001628
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 09 2006
EXTENSIONS
Second formula corrected by Vaclav Kotesovec, Sep 07 2015
STATUS
approved