login
A121588
G.f.: A(x) = 1+x*(1+x*(1+x*(...(1+x*(...)^(-2^n) )...)^-4)^-2)^-1.
0
1, 1, -1, 3, -16, 145, -2347, 72498, -4459887, 554300965, -139235329270, 70475747813447, -71685052573258824, 146249172542467865074, -597744865134782025119044, 4890851047359454263328433041, -80078758027845307168595201926254
OFFSET
0,4
COMMENTS
Limit |a(n)|/2^[(n-1)*(n-2)/2] = 1.97254925752982255...
EXAMPLE
G.f.: A(x) = 1 + x/B(x); B(x) = 1 + x/C(x)^2; C(x) = 1 + x/D(x)^4;
D(x) = 1 + x/E(x)^8; E(x) = 1 + x/F(x)^16; ...
where the respective sequences begin:
B=[1,1,-2,11,-112,2025,-67324,4305909,-545113744,...];
C=[1,1,-4,42,-836,30259,-2041616,265712044,-68214603840,...];
D=[1,1,-8,164,-6456,467850,-63614840,16702037652,...];
E=[1,1,-16,648,-50736,7358500,-2008876560,1059405119352,...];
F=[1,1,-32,2576,-402272,116732040,-63860549280,...].
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(j=0, n, A=1+x/A^(2^(n-j))); polcoeff(A, n)}
CROSSREFS
Cf. A120959 (variant).
Sequence in context: A109398 A294003 A006058 * A331538 A306397 A264660
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 09 2006
STATUS
approved