OFFSET
0,3
COMMENTS
From Gus Wiseman, Aug 05 2019: (Start)
For n > 0, also the number of topologies covering {1..n} whose nonempty open sets have nonempty intersection. Also the number of topologies covering {1..n} whose nonempty open sets are pairwise intersecting. For example, the a(0) = 1 through a(3) = 16 topologies (empty sets not shown) are:
{} {{1}} {{1,2}} {{1,2,3}}
{{1},{1,2}} {{1},{1,2,3}}
{{2},{1,2}} {{2},{1,2,3}}
{{3},{1,2,3}}
{{1,2},{1,2,3}}
{{1,3},{1,2,3}}
{{2,3},{1,2,3}}
{{1},{1,2},{1,2,3}}
{{1},{1,3},{1,2,3}}
{{2},{1,2},{1,2,3}}
{{2},{2,3},{1,2,3}}
{{3},{1,3},{1,2,3}}
{{3},{2,3},{1,2,3}}
{{1},{1,2},{1,3},{1,2,3}}
{{2},{1,2},{2,3},{1,2,3}}
{{3},{1,3},{2,3},{1,2,3}}
(End)
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Herman Jamke, Table of n, a(n) for n = 0..19
M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259.
M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259. (Annotated scanned copy)
FORMULA
MATHEMATICA
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n], {1, n}], Intersection[#1, #2]=={}&], Union@@#==Range[n]&&SubsetQ[#, Union[Union@@@Tuples[#, 2], Intersection@@@Tuples[#, 2]]]&]], {n, 0, 4}] (* Gus Wiseman, Aug 05 2019 *)
A000798 = Append[Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {_, _}][[All, 2]], 0];
a[n_] := If[n == 0, 1, Sum[ Binomial[n, k] A000798[[k+1]], {k, 0, n-1}]];
a /@ Range[0, Length[A000798]-1] (* Jean-François Alcover, Jan 01 2020 *)
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008
STATUS
approved