login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A306445
Number of collections of subsets of {1, 2, ..., n} that are closed under union and intersection.
31
2, 4, 13, 74, 732, 12085, 319988, 13170652, 822378267, 76359798228, 10367879036456, 2029160621690295, 565446501943834078, 221972785233309046708, 121632215040070175606989, 92294021880898055590522262, 96307116899378725213365550192, 137362837456925278519331211455157, 266379254536998812281897840071155592
OFFSET
0,1
REFERENCES
R. Stanley, Enumerative Combinatorics, volume 1, second edition, Exercise 3.46.
FORMULA
a(n) = 1 + Sum_{d=0..n} Sum_{i=d..n} C(n,i)*C(i,i-d)*A000798(d). (Follows by caseworking on the maximal and minimal set in the collection.)
E.g.f.: exp(x) + exp(x)^2*B(exp(x)-1) where B(x) is the e.g.f. for A001035 (after Stanley reference above). - Geoffrey Critzer, Jan 19 2024
EXAMPLE
For n = 0, the empty collection and the collection containing the empty set only are both valid.
For n = 1, the 2^(2^1)=4 possible collections are also all closed under union and intersection.
For n = 2, there are only 3 invalid collections, namely the collections containing both {1} and {2} but not both {1,2} and the empty set. Hence there are 2^(2^2)-3 = 13 valid collections.
From Gus Wiseman, Jul 31 2019: (Start)
The a(0) = 2 through a(4) = 13 sets of sets:
{} {} {}
{{}} {{}} {{}}
{{1}} {{1}}
{{},{1}} {{2}}
{{1,2}}
{{},{1}}
{{},{2}}
{{},{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{},{1},{2},{1,2}}
(End)
MATHEMATICA
Table[Length[Select[Subsets[Subsets[Range[n]]], SubsetQ[#, Union[Union@@@Tuples[#, 2], Intersection@@@Tuples[#, 2]]]&]], {n, 0, 3}] (* Gus Wiseman, Jul 31 2019 *)
A000798 = Cases[Import["https://oeis.org/A000798/b000798.txt", "Table"], {_, _}][[All, 2]];
a[n_] := 1 + Sum[Binomial[n, i]*Binomial[i, i - d]*A000798[[d + 1]], {d, 0, n}, {i, d, n}];
a /@ Range[0, Length[A000798] - 1] (* Jean-François Alcover, Dec 30 2019 *)
PROG
(Python)
import math
# Sequence A000798
topo = [1, 1, 4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423, 8977053873043, 1816846038736192, 519355571065774021, 207881393656668953041, 115617051977054267807460, 88736269118586244492485121, 93411113411710039565210494095, 134137950093337880672321868725846, 261492535743634374805066126901117203]
def nCr(n, r):
return math.factorial(n) // (math.factorial(r) * math.factorial(n-r))
for n in range(len(topo)):
ans = 1
for d in range(n+1):
for i in range(d, n+1):
ans += nCr(n, i) * nCr(i, i-d) * topo[d]
print(n, ans)
CROSSREFS
The covering case with {} is A000798.
The case closed under union only is A102897.
The case closed under intersection only is (also) A102897.
The BII-numbers of these set-systems are A326876.
Sequence in context: A132786 A298065 A298714 * A216670 A103845 A055463
KEYWORD
nonn
AUTHOR
Yuan Yao, Feb 15 2019
EXTENSIONS
a(16)-a(18) from A000798 by Jean-François Alcover, Dec 30 2019
STATUS
approved