OFFSET
0,2
COMMENTS
An ACI algebra or semilattice is a system with a single binary, idempotent, commutative and associative operation.
Or, number of families of subsets of {1, ..., n} that are closed under intersection and contain the empty set.
REFERENCES
G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967.
Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.
P. Colomb, A. Irlande and O. Raynaud, Counting of Moore Families for n=7, International Conference on Formal Concept Analysis (2010)
E. H. Moore, Introduction to a Form of General Analysis, AMS Colloquium Publication 2 (1910), pp. 53-80.
LINKS
N. Dershowitz, G. S. Huang and M. Harris, Enumeration Problems Related to Ground Horn Theories, arXiv:cs/0610054v2 [cs.LO], 2006-2008.
M. Habib and L. Nourine, The number of Moore families on n = 6, Discrete Math., 294 (2005), 291-296.
EXAMPLE
a(2) = 8: Let the points be labeled a, b and let 0 denote the empty set. We want the number of collections of subsets of {a, b} which are closed under intersection and contain the empty subset. 0 subsets: 0 ways, 1 subset: 1 way (0), 2 subsets: 3 ways (0,a; 0,b; 0,ab), 3 subsets: 3 ways (0,a,b; 0,a,ab; 0,b,ab), 4 subsets: 1 way (0,a,b,ab), for a total of 8.
From Gus Wiseman, Aug 02 2019: (Start)
The a(0) = 1 through a(2) = 8 sets of sets with {} that are closed under intersection are:
{{}} {{}} {{}}
{{},{1}} {{},{1}}
{{},{2}}
{{},{1,2}}
{{},{1},{2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{},{1},{2},{1,2}}
(End)
MATHEMATICA
Table[Length[Select[Subsets[Subsets[Range[n]]], MemberQ[#, {}]&&SubsetQ[#, Intersection@@@Tuples[#, 2]]&]], {n, 0, 3}] (* Gus Wiseman, Aug 02 2019 *)
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Mitch Harris, Jan 18 2005
EXTENSIONS
Additional comments from Don Knuth, Jul 01 2005
Changed a(0) from 2 to 1 by Gus Wiseman, Aug 02 2019
STATUS
approved