This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A102898 A Catalan-related transform of 3^n. 7
 1, 3, 9, 30, 99, 330, 1098, 3660, 12195, 40650, 135486, 451620, 1505358, 5017860, 16726068, 55753560, 185844771, 619482570, 2064940470, 6883134900, 22943778138, 76479260460, 254930851404, 849769504680, 2832564956814 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Transform of 1/(1-3x) under the mapping g(x)->g(xc(x^2)), where c(x) is the g.f. of the Catalan numbers A000108. The inverse transform is h(x)->h(x/(1+x^2)). REFERENCES Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 FORMULA G.f.: 2*x/(3*sqrt(1-4*x^2)+2*x-3). a(0)=1, a(n)=sum{k=0..n, k*binomial(n-1, (n-k)/2)(1+(-1)^(n-k))3^k/(n+k)}, n>0. Conjecture: 3*n*a(n) -10*n*a(n-1) +12*(3-n)*a(n-2) +40*(n-3)*a(n-3)=0. - R. J. Mathar, Sep 21 2012 a(n) ~ 2^(n+2) * 5^(n-1) / 3^n. - Vaclav Kotesovec, Feb 01 2014 MATHEMATICA CoefficientList[Series[2*x/(3*Sqrt[1-4*x^2]+2*x-3), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *) CROSSREFS Cf. A100087, A098615. Sequence in context: A199137 A089978 A052906 * A050181 A275690 A089931 Adjacent sequences:  A102895 A102896 A102897 * A102899 A102900 A102901 KEYWORD easy,nonn AUTHOR Paul Barry, Jan 17 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 20:12 EST 2019. Contains 329961 sequences. (Running on oeis4.)