login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199137
G.f. satisfies: A(x) = exp( Sum_{n>=1} C(2*n,n)/2 * A(x^n) * x^n/n ).
0
1, 1, 3, 9, 30, 97, 336, 1153, 4081, 14552, 52609, 191657, 704385, 2604476, 9687433, 36207241, 135920489, 512182805, 1936656361, 7345211322, 27935373368, 106509551719, 407015199144, 1558603221623, 5979839952471, 22983021033071, 88477003979994, 341120527468590
OFFSET
0,3
COMMENTS
Compare to the g.f. C(x) = 1 + x*C(x)^2 of the Catalan numbers (A000108): C(x) = exp( Sum_{n>=1} C(2*n,n)/2 * x^n/n ).
FORMULA
G.f.: Product_{n>=1} C(x^n)^a(n-1) = Sum_{n>=0} a(n)*x^n, where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 30*x^4 + 97*x^5 + 336*x^6 +...
where
log(A(x)) = A(x)*x + 3*A(x^2)*x^2/2 + 10*A(x^3)*x^3/3 + 35*A(x^4)*x^4/4 + 126*A(x^5)*x^5/5 + 462*A(x^6)*x^6/6 + 1716*A(x^7)*x^7/7 + 6435*A(x^8)*x^8/8 +...
The g.f. also equals the product:
A(x) = C(x) * C(x^2) * C(x^3)^3 * C(x^4)^9 * C(x^5)^30 * C(x^6)^97 *...* C(x^n)^a(n-1) *...
where C(x) is the g.f. of the Catalan numbers:
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, subst(A, x, x^m+x*O(x^n))*binomial(2*m, m)/2*x^m/m))); polcoeff(A, n)}
CROSSREFS
Sequence in context: A337267 A337034 A250128 * A089978 A052906 A102898
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 03 2011
STATUS
approved