login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = exp( Sum_{n>=1} C(2*n,n)/2 * A(x^n) * x^n/n ).
0

%I #10 Dec 26 2023 09:41:04

%S 1,1,3,9,30,97,336,1153,4081,14552,52609,191657,704385,2604476,

%T 9687433,36207241,135920489,512182805,1936656361,7345211322,

%U 27935373368,106509551719,407015199144,1558603221623,5979839952471,22983021033071,88477003979994,341120527468590

%N G.f. satisfies: A(x) = exp( Sum_{n>=1} C(2*n,n)/2 * A(x^n) * x^n/n ).

%C Compare to the g.f. C(x) = 1 + x*C(x)^2 of the Catalan numbers (A000108): C(x) = exp( Sum_{n>=1} C(2*n,n)/2 * x^n/n ).

%F G.f.: Product_{n>=1} C(x^n)^a(n-1) = Sum_{n>=0} a(n)*x^n, where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).

%e G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 30*x^4 + 97*x^5 + 336*x^6 +...

%e where

%e log(A(x)) = A(x)*x + 3*A(x^2)*x^2/2 + 10*A(x^3)*x^3/3 + 35*A(x^4)*x^4/4 + 126*A(x^5)*x^5/5 + 462*A(x^6)*x^6/6 + 1716*A(x^7)*x^7/7 + 6435*A(x^8)*x^8/8 +...

%e The g.f. also equals the product:

%e A(x) = C(x) * C(x^2) * C(x^3)^3 * C(x^4)^9 * C(x^5)^30 * C(x^6)^97 *...* C(x^n)^a(n-1) *...

%e where C(x) is the g.f. of the Catalan numbers:

%e C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 +...

%o (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, subst(A, x, x^m+x*O(x^n))*binomial(2*m,m)/2*x^m/m))); polcoeff(A, n)}

%K nonn

%O 0,3

%A _Paul D. Hanna_, Nov 03 2011