login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102900 a(n) = 3a(n-1) + 4a(n-2), a(0)=a(1)=1. 9
1, 1, 7, 25, 103, 409, 1639, 6553, 26215, 104857, 419431, 1677721, 6710887, 26843545, 107374183, 429496729, 1717986919, 6871947673, 27487790695, 109951162777, 439804651111, 1759218604441, 7036874417767, 28147497671065 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Binomial transform of A102901.

Hankel transform is := 1,6,0,0,0,0,0,0,0,0,0,0,... - Philippe Deléham, Nov 02 2008

a(n) + a(n+1) = 2^(2*n+1) = A004171(n).

REFERENCES

Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.

Shalosh B. Ekhad, N. J. A. Sloane, and  Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.

Shalosh B. Ekhad, N. J. A. Sloane, and  Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249arXiv:1503.04249 [math.CO], 2015.

N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.

Index entries for sequences related to cellular automata

Index entries for linear recurrences with constant coefficients, signature (3,4).

FORMULA

G.f.: (1-2x)/(1-3x-4x^2).

a(n) = (2*4^n + 3(-1)^n)/5.

a(n) = ceiling(4^n/5) + floor(4^n/5) = (ceiling(4^n/5))^2 - (floor(4^n/5))^2.

a(n) = Sum_{k=0..n} binomial(2n-k, 2k)2^k. - Paul Barry, Jan 20 2005

a(n) = upper left term in the 2 X 2 matrix [1,3; 2,2]. - Gary W. Adamson, Mar 14 2008

G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(8*4^k-3*(-1)^k)/(x*(8*4^k-3*(-1)^k) + (2*4^k+3*(-1)^k)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 28 2013

a(n+1) = 2^(2*n-1) - a(n), a(1)=1. - Ben Paul Thurston, Dec 27 2015

MATHEMATICA

a[n_]:=(MatrixPower[{{2, 2}, {3, 1}}, n].{{2}, {1}})[[2, 1]]; Table[a[n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)

LinearRecurrence[{3, 4}, {1, 1}, 30] (* Vincenzo Librandi, Dec 28 2015 *)

PROG

(Haskell)

a102900 n = a102900_list !! n

a102900_list = 1 : 1 : zipWith (+)

               (map (* 4) a102900_list) (map (* 3) $ tail a102900_list)

-- Reinhard Zumkeller, Feb 13 2015

(MAGMA) [n le 2 select 1 else 3*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 28 2015

(PARI) a(n)=([0, 1; 4, 3]^n*[1; 1])[1, 1] \\ Charles R Greathouse IV, Mar 28 2016

CROSSREFS

Cf. A001045, A046717, A004171, A086901, A247666 (which appears to be the run length transform of this sequence).

Sequence in context: A247173 A141627 A289606 * A155271 A200152 A255280

Adjacent sequences:  A102897 A102898 A102899 * A102901 A102902 A102903

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Jan 17 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 22:29 EST 2019. Contains 329850 sequences. (Running on oeis4.)