|
|
A102902
|
|
a(n) = 9*a(n-1) - 16*a(n-2), with a(0) = 1, a(1) = 9.
|
|
1
|
|
|
1, 9, 65, 441, 2929, 19305, 126881, 833049, 5467345, 35877321, 235418369, 1544728185, 10135859761, 66507086889, 436390025825, 2863396842201, 18788331166609, 123280631024265, 808912380552641, 5307721328585529
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
G.f.: 1/(1-9*x+16*x^2).
a(n) = Sum_{k=0..n} binomial(2*n-k+1, k)*4^k.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-16)^k*9^(n-2*k).
a(n) = (1/sqrt(17))*( ((9+sqrt(17))/2)^(n+1) - ((9-sqrt(17))/2)^(n+1) ), with n >= 0. - Paolo P. Lava, Jun 16 2008
|
|
MATHEMATICA
|
LinearRecurrence[{9, -16}, {1, 9}, 20] (* Harvey P. Dale, Jul 28 2016 *)
|
|
PROG
|
(SageMath) [lucas_number1(n, 9, 16) for n in range(1, 21)] # Zerinvary Lajos, Apr 23 2009
(Magma) [4^n*Evaluate(ChebyshevSecond(n+1), 9/8): n in [0..30]]; // G. C. Greubel, Dec 09 2022
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|