login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102905
a(n) = A113655(Fibonacci(n+1)).
1
3, 3, 2, 1, 5, 8, 15, 19, 36, 57, 89, 142, 233, 377, 612, 985, 1599, 2586, 4181, 6763, 10946, 17711, 28659, 46366, 75027, 121395, 196418, 317809, 514229, 832040, 1346271, 2178307, 3524580, 5702889, 9227465, 14930350, 24157817, 39088169
OFFSET
0,1
FORMULA
a(n) = f(Fibonacci(n+1)), where f(n) = n-2 if (n mod 3) = 0, f(n) = n+2 if (n mod 3) = 1, otherwise f(n) = n.
a(n) = A113655(Fibonacci(n+1)).
G.f.: (3-4*x^2-4*x^3+2*x^4+2*x^5+2*x^6-4*x^7-x^8+2*x^9) / ((1-x)*(1+x)*(1+x^2)*(1-x-x^2)*(1+x^4)). - Colin Barker, Dec 11 2012
a(n) = (1 + 3*(-1)^n)/4 + Fibonacci(n+1) + (3/2)*(-1)^floor(n/2) * (n mod 2) + A014017(n) + A014017(n-1) - A014017(n-2). - G. C. Greubel, Dec 09 2022
MATHEMATICA
f[n_]:= If[Mod[n, 3]==0, n-2, If[Mod[n, 3]==1, n+2, n]]; (* f=A113655 *)
Table[f[Fibonacci[n+1]], {n, 0, 50}]
PROG
(Magma)
A113655:= func< n | 6*Floor((n+2)/3) -(n+2) >;
A102905:= func< n | A113655(Fibonacci(n+1)) >;
[A102905(n): n in [0..50]]; // G. C. Greubel, Dec 09 2022
(SageMath)
def A113655(n): return 6*((n+2)//3) -(n+2)
def A102905(n): return A113655(fibonacci(n+1))
[A102905(n) for n in range(51)] # G. C. Greubel, Dec 09 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Mar 16 2005
EXTENSIONS
Edited by G. C. Greubel, Dec 09 2022
STATUS
approved