login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102905 a(n) = A113655(Fibonacci(n+1)). 1
3, 3, 2, 1, 5, 8, 15, 19, 36, 57, 89, 142, 233, 377, 612, 985, 1599, 2586, 4181, 6763, 10946, 17711, 28659, 46366, 75027, 121395, 196418, 317809, 514229, 832040, 1346271, 2178307, 3524580, 5702889, 9227465, 14930350, 24157817, 39088169 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
LINKS
FORMULA
a(n) = f(Fibonacci(n+1)), where f(n) = n-2 if (n mod 3) = 0, f(n) = n+2 if (n mod 3) = 1, otherwise f(n) = n.
a(n) = A113655(Fibonacci(n+1)).
G.f.: (3-4*x^2-4*x^3+2*x^4+2*x^5+2*x^6-4*x^7-x^8+2*x^9) / ((1-x)*(1+x)*(1+x^2)*(1-x-x^2)*(1+x^4)). - Colin Barker, Dec 11 2012
a(n) = (1 + 3*(-1)^n)/4 + Fibonacci(n+1) + (3/2)*(-1)^floor(n/2) * (n mod 2) + A014017(n) + A014017(n-1) - A014017(n-2). - G. C. Greubel, Dec 09 2022
MATHEMATICA
f[n_]:= If[Mod[n, 3]==0, n-2, If[Mod[n, 3]==1, n+2, n]]; (* f=A113655 *)
Table[f[Fibonacci[n+1]], {n, 0, 50}]
PROG
(Magma)
A113655:= func< n | 6*Floor((n+2)/3) -(n+2) >;
A102905:= func< n | A113655(Fibonacci(n+1)) >;
[A102905(n): n in [0..50]]; // G. C. Greubel, Dec 09 2022
(SageMath)
def A113655(n): return 6*((n+2)//3) -(n+2)
def A102905(n): return A113655(fibonacci(n+1))
[A102905(n) for n in range(51)] # G. C. Greubel, Dec 09 2022
CROSSREFS
Sequence in context: A080993 A140259 A175644 * A020862 A131589 A338113
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Mar 16 2005
EXTENSIONS
Edited by G. C. Greubel, Dec 09 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 22:54 EST 2023. Contains 367662 sequences. (Running on oeis4.)