login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113655
Reverse blocks of three in the sequence of natural numbers.
6
3, 2, 1, 6, 5, 4, 9, 8, 7, 12, 11, 10, 15, 14, 13, 18, 17, 16, 21, 20, 19, 24, 23, 22, 27, 26, 25, 30, 29, 28, 33, 32, 31, 36, 35, 34, 39, 38, 37, 42, 41, 40, 45, 44, 43, 48, 47, 46, 51, 50, 49, 54, 53, 52, 57, 56, 55, 60, 59, 58, 63, 62, 61, 66, 65, 64, 69, 68, 67, 72, 71, 70
OFFSET
1,1
FORMULA
a(n) = 3*floor((n+2)/3) - (n-1) mod 3. - Robert G. Wilson v and Zak Seidov, Jan 20 2006
a(n) = a(n-3)+3 = a(n-1)+a(n-3)-a(n-4). - Jaume Oliver Lafont, Dec 02 2008
G.f.: (3*x - x^2 - x^3 + 2*x^4)/(1 - x - x^3 + x^4) = x*(3 - x - x^2 + 2*x^3)/((1 + x + x^2)*(1-x)^2). - Jaume Oliver Lafont, Mar 25 2009
a(n) = 6*floor((n+2)/3) - n - 2. - Dennis P. Walsh, Aug 16 2013
a(n) = A000027(n) + 2 * A057078(n+2). - Dennis P. Walsh, Aug 16 2013
a(n) = n + 2 * A079918(n-1) - 2 * A079918(n). - Dennis P. Walsh, Aug 16 2013
a(n) = n - 2*A049347(n). - Wesley Ivan Hurt, Sep 27 2017, simplified Jun 30 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2). - Amiram Eldar, Jan 31 2023
MAPLE
seq(6*floor((n+2)/3)-n-2, n=1..72); # Dennis P. Walsh, Aug 16 2013
MATHEMATICA
f[n_] := Switch[ Mod[n, 3], 0, n - 2, 1, n + 2, 2, n]; Array[f, 72] (* Robert G. Wilson v, Jan 18 2006 *)
LinearRecurrence[{1, 0, 1, -1}, {3, 2, 1, 6}, 100] (* or *) CoefficientList[Series[(3 - x - x^2 + 2 x^3) / ((1 + x + x^2) (1 - x)^2), {x, 0, 80}], x] (* Vincenzo Librandi, Sep 28 2017 *)
Reverse/@Partition[Range[81], 3]//Flatten (* Harvey P. Dale, Oct 11 2020 *)
PROG
(PARI) a(n)=2+n-2*((n+2)%3); \\ Jaume Oliver Lafont, Mar 25 2009
(Magma) I:=[3, 2, 1, 6]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..80]]; // Vincenzo Librandi, Sep 28 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Parag D. Mehta (pmehta23(AT)gmail.com), Jan 16 2006
EXTENSIONS
More terms from Robert G. Wilson v, Jan 18 2006
STATUS
approved