login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175644
Decimal expansion of the sum 1/p^2 over primes p == 1 (mod 3).
13
0, 3, 3, 2, 1, 5, 5, 5, 0, 3, 2, 2, 2, 1, 7, 9, 5, 0, 5, 5, 2, 9, 2, 7, 1, 7, 7, 7, 8, 0, 1, 3, 8, 0, 9, 6, 4, 8, 1, 0, 8, 7, 5, 6, 6, 6, 5, 3, 2, 6, 6, 8, 3, 0, 5, 7, 3, 2, 8, 8, 5, 6, 6, 2, 4, 6, 2, 6, 8, 3, 6, 7, 2, 4, 1, 5, 4, 3, 4, 2, 8, 9, 8, 8, 9, 4, 4, 1, 7, 3, 9, 9, 4, 4, 1, 7, 0, 5, 8, 1, 5, 9, 7, 4, 4, 8
OFFSET
0,2
COMMENTS
The prime zeta modulo function at 2 for primes of the form 3k+1, which is P_{3,2}(2) = Sum_{p in A002476} 1/p^2 = 1/7^2 + 1/13^2 + 1/19^2 + 1/31^2 + ...
The complementary Sum_{p in A003627} 1/p^2 is given by P_{3,2}(2) = A085548 - 1/3^2 - (this value here) = 0.307920758607736436842505075940... = A343612.
EXAMPLE
P_{3,1}(2) = 0.03321555032221795055292717778013809648108756665...
MATHEMATICA
With[{s=2}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* Vaclav Kotesovec, Jan 13 2021 *)
digits = 1003;
m = 100; (* initial value of n beyond which summand is considered negligible *)
dm = 100; (* increment of m *)
P[s_, m_] (* "P" short name for "PrimeZeta31" *):= P[s, m] = Sum[Module[{t}, t = s + 2 n*s; MoebiusMu[2n + 1]* ((1/(4n + 2)) (-Log[1 + 2^t] - Log[1 + 3^t] + Log[Zeta[t]] - Log[Zeta[2t]] + Log[Zeta[t, 1/6] - Zeta[t, 5/6]]))], {n, 0, m}] // N[#, digits+10]&;
P[2, m]; P[2, m += dm];
While[ RealDigits[P[2, m]][[1]][[1;; digits]] !=
RealDigits[P[2, m-dm]][[1]][[1;; digits]], Print["m = ", m]; m+=dm];
Join[{0}, RealDigits[P[2, m]][[1]][[1;; digits]]] (* Jean-François Alcover, Jun 24 2022, after Vaclav Kotesovec *)
PROG
(PARI)
my(s=0); forprimestep(p=1, 1e8, 3, s+=1./p^2); s \\ For illustration: primes up to 10^N give only about 2N+2 (= 18 for N=8) correct digits. - M. F. Hasler, Apr 23 2021
(PARI)
PrimeZeta31(s)=suminf(n=0, my(t=s+2*n*s); moebius(2*n+1)*log((zeta(t)*(zetahurwitz(t, 1/6)-zetahurwitz(t, 5/6)))/((1+2^t)*(1+3^t)*zeta(2*t)))/(4*n+2)) \\ Inspired from Kotesovec's Mmca code
A175644_upto(N=100)={localprec(N+5); digits((PrimeZeta31(2)+1)\.1^N)[^1]} \\ M. F. Hasler, Apr 23 2021
CROSSREFS
Cf. A086032 (P_{4,1}(2): same for p==1 (mod 4)), A175645 (P_{3,1}(3): same for 1/p^3), A343612 (P_{3,2}(2): same for p==2 (mod 3)), A085548 (PrimeZeta(2)).
Sequence in context: A080993 A377787 A140259 * A102905 A020862 A131589
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, Aug 01 2010
EXTENSIONS
More digits from Vaclav Kotesovec, Jun 27 2020
STATUS
approved