login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175641
Decimal expansion of the negated Dirichlet Prime L-function of the non-principal character mod 3 at 2.
0
2, 7, 4, 7, 0, 5, 2, 0, 8, 2, 8, 5, 5, 1, 8, 4, 8, 6, 2, 8, 9, 5, 7, 7, 8, 9, 8, 1, 6, 0, 8, 6, 0, 6, 3, 0, 0, 9, 9, 9, 4, 5, 0, 9, 8, 8, 2, 2, 2, 4, 7, 6, 4, 9, 4, 7, 8, 7, 3, 0, 6, 8, 6, 7, 4, 7, 5, 1, 7, 1, 8, 1, 7, 6, 9, 7, 1, 2, 9, 0, 5, 3, 5, 9, 9, 5, 8, 0, 8, 5, 2, 5, 4, 9, 6, 1, 6, 3, 0, 7, 9, 2, 2, 0, 5, 4
OFFSET
0,1
COMMENTS
The absolute value of S(2,chi_2) = sum_{primes p = A000040} A102283(p)/p^2 = -1/2^2 -1/5^2 +1/7^2 -1/11^2 +1/13^2 -1/17^2 +...
EXAMPLE
S(2,chi_2) = -0.274705208285518486289577898160860630099...
MATHEMATICA
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums); $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[-S[3, 2, 2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 22 2021 *)
CROSSREFS
Cf. A086241.
Sequence in context: A197143 A132724 A306579 * A286984 A021368 A019968
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, Aug 01 2010
EXTENSIONS
More digits from Vaclav Kotesovec, Jun 27 2020
STATUS
approved