login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175639 Decimal expansion of product_{p = prime} (1-3/p^3+2/p^4+1/p^5-1/p^6). 2
6, 7, 8, 2, 3, 4, 4, 9, 1, 9, 1, 7, 3, 9, 1, 9, 7, 8, 0, 3, 5, 5, 3, 8, 2, 7, 9, 4, 8, 2, 8, 9, 4, 8, 1, 4, 0, 9, 6, 3, 3, 2, 2, 3, 9, 1, 8, 9, 4, 4, 0, 1, 0, 3, 0, 3, 6, 4, 6, 0, 4, 1, 5, 9, 6, 4, 9, 8, 3, 3, 7, 0, 7, 4, 0, 1, 2, 3, 2, 3, 3, 2, 1, 3, 7, 6, 2, 1, 2, 2, 9, 3, 3, 4, 8, 4, 6, 1, 6, 8, 8, 8, 3, 2, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Equals (49/64)*(668/729)*(15304/15625)*(116724/117649)*... inserting p= A000040 = 2, 3, 5, 7.. into the factor. Slightly larger than product_{p=primes} (1-3/p^3) = 0.534566872085103888416775...

LINKS

Table of n, a(n) for n=0..104.

T. Taniguchi, A mean value theorem for the square of class number times regulator of quadratic extensions, arXiv:math/0410531

S. Finch, Class Number Theory

Eric Weisstein's World of Mathematics, Prime Products

Eric Weisstein's World of Mathematics, Taniguchi's Constant

Wikipedia, Euler Product

EXAMPLE

0.678234491917391978035...

MAPLE

read("transforms") : efact := 1-3/p^3+2/p^4+1/p^5-1/p^6 ; Digits := 130 : tm := 310 : subs (p=1/x, 1/efact) ; taylor(%, x=0, tm) : L := [seq(coeftayl(%, x=0, i), i=1..tm-1)] : Le := EULERi(L) : x := 1.0 :

for i from 2 to nops(Le) do x := x/evalf(Zeta(i))^op(i, Le) ; x := evalf(x) ; print(x) ; end do:

MATHEMATICA

digits = 105; $MaxExtraPrecision = 400; m0 = 1000; dm = 100; Clear[s];

LR = LinearRecurrence[{0, 0, 3, -2, -1, 1}, {0, 0, -9, 8, 5, -33}, 2 m0];

r[n_Integer] := LR[[n]]; s[m_] := s[m] = NSum[r[n] PrimeZetaP[n]/n, {n, 3, m}, NSumTerms -> m0, WorkingPrecision -> 400] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m-dm], 10, digits][[1]], Print[m]; m = m+dm]; RealDigits[s[m], 10, digits][[1]] (* Jean-François Alcover, Apr 15 2016 *)

CROSSREFS

Sequence in context: A004487 A274137 A010500 * A256922 A202346 A117022

Adjacent sequences:  A175636 A175637 A175638 * A175640 A175641 A175642

KEYWORD

cons,nonn

AUTHOR

R. J. Mathar, Aug 01 2010

EXTENSIONS

More digits from Jean-François Alcover, Apr 15 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 23:13 EST 2016. Contains 279021 sequences.