login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343612
Decimal expansion of P_{3,2}(2) = Sum 1/p^2 over primes == 2 (mod 3).
10
3, 0, 7, 9, 2, 0, 7, 5, 8, 6, 0, 7, 7, 3, 6, 4, 3, 6, 8, 4, 2, 5, 0, 5, 0, 7, 5, 9, 4, 0, 9, 9, 8, 7, 2, 6, 5, 8, 1, 0, 3, 2, 6, 6, 5, 4, 7, 5, 5, 1, 4, 4, 8, 0, 0, 5, 2, 0, 1, 9, 2, 5, 2, 9, 9, 3, 7, 8, 5, 5, 4, 9, 0, 1, 1, 2, 5, 6, 3, 3, 4, 3, 4, 8, 9, 0, 2, 2, 5, 9, 2, 4, 9, 3, 7, 8, 6, 8, 8, 9, 5, 1, 9, 5, 0
OFFSET
0,1
COMMENTS
The prime zeta modulo function P_{m,r}(s) = Sum_{primes p == r (mod m)} 1/p^s generalizes the prime zeta function P(s) = Sum_{primes p} 1/p^s.
FORMULA
P_{3,2}(2) = P(2) - 1/3^2 - P_{3,1}(2) = A085548 - A000012 - A175644.
EXAMPLE
0.30792075860773643684250507594099872658103266547551448005201925299378554901...
MATHEMATICA
digits = 105; nmax0 = 20; dnmax = 5;
Clear[PrimeZeta31];
PrimeZeta31[s_, nmax_] := PrimeZeta31[s, nmax] = Sum[Module[{t}, t = s + 2 n*s; MoebiusMu[2n + 1] ((1/(4n + 2)) (-Log[1 + 2^t] - Log[1 + 3^t] + Log[Zeta[t]] - Log[Zeta[2t]] + Log[Zeta[t, 1/6] - Zeta[t, 5/6]]))], {n, 0, nmax}] // N[#, digits+5]&;
PrimeZeta31[2, nmax = nmax0];
PrimeZeta31[2, nmax += dnmax];
While[Abs[PrimeZeta31[2, nmax] - PrimeZeta31[2, nmax-dnmax]] > 10^-(digits+5), Print["nmax = ", nmax]; nmax += dnmax];
PrimeZeta32[2] = PrimeZetaP[2] - 1/3^2 - PrimeZeta31[2, nmax];
RealDigits[PrimeZeta32[2], 10, digits][[1]] (* Jean-François Alcover, May 06 2021, after M. F. Hasler's PARI code *)
PROG
(PARI)
s=0; forprimestep(p=2, 1e8, 3, s+=1./p^2); s \\ For illustration: using primes up to 10^N gives about 2N+2 (= 18 for N=8) correct digits.
PrimeZeta32(s)={sumeulerrat(1/p^s)-1/3^s-suminf(n=0, my(t=s+2*n*s); moebius(2*n+1)*log((zeta(t)*(zetahurwitz(t, 1/6)-zetahurwitz(t, 5/6)))/((1+2^t)*(1+3^t)*zeta(2*t)))/(4*n+2))}
A343612_upto(N=100)={localprec(N+5); digits(PrimeZeta32(2)\.1^N)}
CROSSREFS
Cf. A003627 (primes 3k-1), A085548 (PrimeZeta(2)), A021031 (1/27).
Cf. A175644 (same for primes 3k+1), A086032 (for primes 4k+1), A085991 (for primes 4k+3), A343613 - A343619 (P_{3,2}(s): same with 1/p^s, s = 3, ..., 9).
Sequence in context: A019970 A342698 A239022 * A363502 A198488 A296364
KEYWORD
nonn,cons
AUTHOR
M. F. Hasler, Apr 22 2021
STATUS
approved