OFFSET
0,2
LINKS
Jean-François Alcover, Table of n, a(n) for n = 0..999
P. Flajolet and I. Vardi, Zeta Function Expansions of Classical Constants, Unpublished manuscript. 1996.
X. Gourdon and P. Sebah, Some Constants from Number theory.
R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547 [math.NT], 2010-2015, section 3.2 constant P(m=4,n=3,s=2).
FORMULA
Zeta_R(2) = Sum_{primes p == 3 (mod 4)} 1/p^2
= (1/2)*Sum_{n>=0} mobius(2*n+1)*log(b((2*n+1)*2))/(2*n+1),
where b(x)=(1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.
EXAMPLE
0.14843365646700782822586507749... = 1/3^2 + 1/7^2 + 1/11^2 + 1/19^2 + 1/23^2 + ...
MATHEMATICA
digits = 1000; nmax0 = 500; dnmax = 10;
Clear[PrimeZeta43];
PrimeZeta43[s_, nmax_] := PrimeZeta43[s, nmax] = (1/2) Sum[(MoebiusMu[2n + 1] ((4n + 2) Log[2] + Log[((-1 + 2^(4n + 2)) Zeta[4n + 2])/(Zeta[4 n + 2, 1/4] - Zeta[4n + 2, 3/4])]))/(2n + 1), {n, 0, nmax}] // N[#, digits+5]&;
PrimeZeta43[2, nmax = nmax0];
PrimeZeta43[2, nmax += dnmax];
While[Abs[PrimeZeta43[2, nmax] - PrimeZeta43[2, nmax - dnmax]] > 10^-(digits+5), Print["nmax = ", nmax]; nmax += dnmax];
PrimeZeta43[2] = PrimeZeta43[2, nmax];
RealDigits[PrimeZeta43[2], 10, digits][[1]] (* Jean-François Alcover, Jun 21 2011, updated May 06 2021 *)
PROG
(PARI)
PrimeZeta43(s)={suminf(n=0, my(t=s+s*n*2); moebius(n*2+1)*log(zeta(t)/(zetahurwitz(t, 1/4)-zetahurwitz(t, 3/4))*(4^t-2^t))/(n*2+1))/2}
A085991_upto(N=100)={localprec(N+3); digits((PrimeZeta43(2)+1)\.1^N)[^1]} \\ M. F. Hasler, Apr 25 2021
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
STATUS
approved