login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085991
Decimal expansion of the prime zeta modulo function at 2 for primes of the form 4k+3.
14
1, 4, 8, 4, 3, 3, 6, 5, 6, 4, 6, 7, 0, 0, 7, 8, 2, 8, 2, 2, 5, 8, 6, 5, 0, 7, 7, 4, 9, 0, 7, 1, 1, 3, 7, 1, 8, 8, 7, 5, 5, 5, 8, 4, 1, 7, 4, 4, 8, 0, 6, 8, 8, 9, 4, 4, 2, 5, 0, 7, 5, 0, 8, 0, 5, 5, 2, 9, 8, 2, 0, 0, 3, 1, 9, 7, 6, 8, 2, 2, 9, 3, 0, 6, 4, 3, 0, 9, 8, 6, 8, 5, 0, 6, 7, 2, 4, 6, 9, 0, 9, 3, 5, 0, 7
OFFSET
0,2
LINKS
Jean-François Alcover, Table of n, a(n) for n = 0..999
P. Flajolet and I. Vardi, Zeta Function Expansions of Classical Constants, Unpublished manuscript. 1996.
X. Gourdon and P. Sebah, Some Constants from Number theory.
R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547 [math.NT], 2010-2015, section 3.2 constant P(m=4,n=3,s=2).
FORMULA
Zeta_R(2) = Sum_{primes p == 3 (mod 4)} 1/p^2
= (1/2)*Sum_{n>=0} mobius(2*n+1)*log(b((2*n+1)*2))/(2*n+1),
where b(x)=(1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.
EXAMPLE
0.14843365646700782822586507749... = 1/3^2 + 1/7^2 + 1/11^2 + 1/19^2 + 1/23^2 + ...
MATHEMATICA
digits = 1000; nmax0 = 500; dnmax = 10;
Clear[PrimeZeta43];
PrimeZeta43[s_, nmax_] := PrimeZeta43[s, nmax] = (1/2) Sum[(MoebiusMu[2n + 1] ((4n + 2) Log[2] + Log[((-1 + 2^(4n + 2)) Zeta[4n + 2])/(Zeta[4 n + 2, 1/4] - Zeta[4n + 2, 3/4])]))/(2n + 1), {n, 0, nmax}] // N[#, digits+5]&;
PrimeZeta43[2, nmax = nmax0];
PrimeZeta43[2, nmax += dnmax];
While[Abs[PrimeZeta43[2, nmax] - PrimeZeta43[2, nmax - dnmax]] > 10^-(digits+5), Print["nmax = ", nmax]; nmax += dnmax];
PrimeZeta43[2] = PrimeZeta43[2, nmax];
RealDigits[PrimeZeta43[2], 10, digits][[1]] (* Jean-François Alcover, Jun 21 2011, updated May 06 2021 *)
PROG
(PARI)
PrimeZeta43(s)={suminf(n=0, my(t=s+s*n*2); moebius(n*2+1)*log(zeta(t)/(zetahurwitz(t, 1/4)-zetahurwitz(t, 3/4))*(4^t-2^t))/(n*2+1))/2}
A085991_upto(N=100)={localprec(N+3); digits((PrimeZeta43(2)+1)\.1^N)[^1]} \\ M. F. Hasler, Apr 25 2021
CROSSREFS
Cf. A086032 (analog for primes 4k+1), A085548 (PrimeZeta(2)), A002145.
Cf. A085992 .. A085998 (Zeta_R(3..9)).
Sequence in context: A365944 A092511 A045816 * A122110 A082632 A296481
KEYWORD
cons,nonn
AUTHOR
Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
STATUS
approved