login
A085994
Decimal expansion of the prime zeta modulo function at 5 for primes of the form 4k+3.
3
0, 0, 4, 1, 8, 1, 5, 4, 3, 4, 4, 9, 7, 0, 2, 4, 5, 9, 6, 1, 4, 3, 0, 6, 3, 3, 4, 3, 5, 2, 8, 1, 4, 6, 2, 7, 1, 5, 4, 2, 5, 4, 5, 4, 3, 0, 2, 0, 8, 5, 2, 1, 8, 4, 3, 5, 3, 3, 9, 6, 7, 4, 1, 2, 5, 1, 3, 4, 5, 5, 7, 4, 1, 5, 9, 9, 5, 0, 9, 1, 9, 5, 0, 5, 6, 7, 2, 7, 4, 9, 3, 5, 2, 6, 8, 9, 5, 7, 6, 9, 2, 2, 8, 3, 8
OFFSET
0,3
LINKS
P. Flajolet and I. Vardi, Zeta Function Expansions of Classical Constants, Unpublished manuscript. 1996.
X. Gourdon and P. Sebah, Some Constants from Number theory.
R. J. Mathar, Table of Dirichlet L-Series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015, value P(m=4, n=3, s=5), page 21.
FORMULA
Zeta_R(5) = Sum_{primes r == 3 mod 4} 1/p^5
= (1/2)*Sum_{n=0..inf} mobius(2*n+1)*log(b((2*n+1)*5))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.
EXAMPLE
0.004181543449702459614306334352814627154254543020852184353396741251345574...
MATHEMATICA
b[x_] = (1 - 2^(-x))*(Zeta[x]/DirichletBeta[x]); $MaxExtraPrecision = 200; m = 40; Join[{0, 0}, RealDigits[(1/2)*NSum[MoebiusMu[2n + 1]* Log[b[(2n + 1)*5]]/(2n + 1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 22 2011, updated Mar 14 2018 *)
PROG
(PARI) A085994_upto(N=100)={localprec(N+3); digits((PrimeZeta43(5)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021
CROSSREFS
Cf. A085991 .. A085998 (Zeta_R(2..9)).
Cf. A086035 (analog for primes 4k+1), A085965 (PrimeZeta(5)), A002145 (primes 4k+3).
Sequence in context: A297402 A239666 A101512 * A179836 A334451 A040019
KEYWORD
cons,nonn
AUTHOR
Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
STATUS
approved