login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085997
Decimal expansion of the prime zeta modulo function at 8 for primes of the form 4k+3.
3
0, 0, 0, 1, 5, 2, 5, 9, 3, 9, 9, 4, 8, 3, 7, 4, 3, 4, 0, 9, 0, 7, 1, 5, 1, 9, 0, 7, 1, 0, 3, 7, 0, 6, 0, 6, 5, 8, 6, 5, 2, 9, 8, 8, 3, 9, 1, 0, 2, 6, 4, 4, 4, 2, 1, 3, 0, 3, 6, 5, 9, 3, 4, 0, 8, 2, 5, 5, 3, 8, 8, 9, 1, 9, 5, 8, 8, 9, 9, 5, 5, 4, 6, 7, 1, 9, 4, 2, 9, 3, 6, 5, 7, 1, 2, 6, 2, 8, 3, 1, 4, 1, 2, 7, 9
OFFSET
0,5
LINKS
P. Flajolet and I. Vardi, Zeta Function Expansions of Classical Constants, Unpublished manuscript. 1996.
X. Gourdon and P. Sebah, Some Constants from Number theory.
R. J. Mathar, Table of Dirichlet L-Series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015, value P(m=4, n=3, s=8), page 21.
FORMULA
Zeta_R(8) = Sum_{primes p == 3 mod 4} 1/p^8
= (1/2)*Sum_{n=0..inf} mobius(2*n+1)*log(b((2*n+1)*8))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.
EXAMPLE
0.000152593994837434090715190710370606586529883910264442130365934082553889...
MATHEMATICA
b[x_] = (1 - 2^(-x))*(Zeta[x]/DirichletBeta[x]); $MaxExtraPrecision = 320; m = 40; Join[{0, 0, 0}, RealDigits[(1/2)* NSum[MoebiusMu[2n + 1]* Log[b[(2n + 1)*8]]/(2n + 1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 22 2011, updated Mar 14 2018 *)
PROG
(PARI) A085997_upto(N=100)={localprec(N+3); digits((PrimeZeta43(8)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021
CROSSREFS
Cf. A086038 (analog for primes 4k+1), A085968 (PrimeZeta(8)), A002145 (primes 4k+3).
Cf. A085991 .. A085998 (Zeta_R(2..9)).
Sequence in context: A142702 A236184 A201530 * A071546 A378873 A154649
KEYWORD
cons,nonn
AUTHOR
Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
EXTENSIONS
Edited by M. F. Hasler, Apr 25 2021
STATUS
approved