login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A085995 Decimal expansion of the prime zeta modulo function at 6 for primes of the form 4k+3. 3
0, 0, 1, 3, 8, 0, 8, 3, 5, 8, 8, 6, 9, 7, 1, 7, 3, 9, 1, 6, 3, 0, 3, 1, 8, 5, 4, 1, 2, 8, 0, 1, 5, 8, 2, 2, 6, 1, 0, 6, 0, 1, 3, 9, 6, 3, 2, 7, 5, 6, 5, 4, 2, 9, 6, 8, 0, 2, 6, 4, 8, 0, 2, 5, 7, 8, 5, 3, 0, 7, 5, 2, 2, 2, 7, 0, 7, 4, 6, 9, 1, 3, 4, 7, 9, 1, 5, 6, 0, 4, 2, 5, 1, 7, 1, 0, 1, 6, 6, 0, 1, 6, 8, 7, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..104.

P. Flajolet and I. Vardi, Zeta Function Expansions of Classical Constants, Unpublished manuscript. 1996.

X. Gourdon and P. Sebah, Some Constants from Number theory.

R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547 [math.NT], 2010-2015, value P(m=4, n=3, s=6), page 21.

OEIS index to entries related to the (prime) zeta function.

FORMULA

Zeta_R(6) = Sum_{p in A002145} 1/p^6 where A002145 = {primes p == 3 (mod 4)},

  = (1/2)*Sum_{n >= 0} möbius(2*n+1)*log(b((2*n+1)*6))/(2*n+1),

  where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.

EXAMPLE

0.0013808358869717391630318541280158226106013963275654296802648025785307522...

MATHEMATICA

b[x_] = (1 - 2^(-x))*(Zeta[x]/DirichletBeta[x]); $MaxExtraPrecision = 250; m = 40; Join[{0, 0}, RealDigits[(1/2)*NSum[MoebiusMu[2n + 1]* Log[b[(2n + 1)*6]]/(2n + 1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]]][[1 ;; 105]] (* Jean-François Alcover, Jun 22 2011, updated Mar 14 2018 *)

PROG

(PARI) A085995_upto(N=100)={localprec(N+3); digits((PrimeZeta43(6)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021

CROSSREFS

Cf. A002145 (primes 4k+3), A001014 (n^6), A085966 (PrimeZeta(6)).

Cf. A085991 - A085998 (Zeta_R(2..9): same for 1/p^2, ..., 1/p^9), A086036 (same for primes 4k+1), A343626 (for primes 3k+1), A343616 (for primes 3k+2).

Sequence in context: A154462 A112255 A197417 * A076482 A225802 A156827

Adjacent sequences:  A085992 A085993 A085994 * A085996 A085997 A085998

KEYWORD

cons,nonn

AUTHOR

Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

EXTENSIONS

Edited by M. F. Hasler, Apr 25 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 5 16:55 EDT 2022. Contains 357259 sequences. (Running on oeis4.)