Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Apr 26 2021 01:53:22
%S 0,0,1,3,8,0,8,3,5,8,8,6,9,7,1,7,3,9,1,6,3,0,3,1,8,5,4,1,2,8,0,1,5,8,
%T 2,2,6,1,0,6,0,1,3,9,6,3,2,7,5,6,5,4,2,9,6,8,0,2,6,4,8,0,2,5,7,8,5,3,
%U 0,7,5,2,2,2,7,0,7,4,6,9,1,3,4,7,9,1,5,6,0,4,2,5,1,7,1,0,1,6,6,0,1,6,8,7,8
%N Decimal expansion of the prime zeta modulo function at 6 for primes of the form 4k+3.
%H P. Flajolet and I. Vardi, <a href="http://algo.inria.fr/flajolet/Publications/landau.ps">Zeta Function Expansions of Classical Constants</a>, Unpublished manuscript. 1996.
%H X. Gourdon and P. Sebah, <a href="http://numbers.computation.free.fr/Constants/Miscellaneous/constantsNumTheory.html">Some Constants from Number theory</a>.
%H R. J. Mathar, <a href="http://arxiv.org/abs/1008.2547">Table of Dirichlet L-series and prime zeta modulo functions for small moduli</a>, arXiv:1008.2547 [math.NT], 2010-2015, value P(m=4, n=3, s=6), page 21.
%H <a href="/index/Z#zeta_function">OEIS index to entries related to the (prime) zeta function</a>.
%F Zeta_R(6) = Sum_{p in A002145} 1/p^6 where A002145 = {primes p == 3 (mod 4)},
%F = (1/2)*Sum_{n >= 0} möbius(2*n+1)*log(b((2*n+1)*6))/(2*n+1),
%F where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.
%e 0.0013808358869717391630318541280158226106013963275654296802648025785307522...
%t b[x_] = (1 - 2^(-x))*(Zeta[x]/DirichletBeta[x]); $MaxExtraPrecision = 250; m = 40; Join[{0, 0}, RealDigits[(1/2)*NSum[MoebiusMu[2n + 1]* Log[b[(2n + 1)*6]]/(2n + 1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]]][[1 ;; 105]] (* _Jean-François Alcover_, Jun 22 2011, updated Mar 14 2018 *)
%o (PARI) A085995_upto(N=100)={localprec(N+3); digits((PrimeZeta43(6)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - _M. F. Hasler_, Apr 25 2021
%Y Cf. A002145 (primes 4k+3), A001014 (n^6), A085966 (PrimeZeta(6)).
%Y Cf. A085991 - A085998 (Zeta_R(2..9): same for 1/p^2, ..., 1/p^9), A086036 (same for primes 4k+1), A343626 (for primes 3k+1), A343616 (for primes 3k+2).
%K cons,nonn
%O 0,4
%A Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
%E Edited by _M. F. Hasler_, Apr 25 2021