login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343626
Decimal expansion of the Prime Zeta modulo function P_{3,1}(6) = Sum 1/p^6 over primes p == 1 (mod 3).
3
0, 0, 0, 0, 0, 8, 7, 3, 0, 0, 1, 1, 0, 2, 3, 1, 9, 8, 1, 6, 7, 0, 1, 2, 0, 4, 2, 7, 7, 9, 1, 4, 5, 2, 3, 1, 9, 4, 9, 5, 6, 1, 0, 7, 9, 7, 6, 4, 5, 3, 9, 1, 8, 3, 6, 9, 8, 9, 7, 1, 7, 7, 1, 3, 8, 1, 3, 6, 2, 9, 8, 3, 2, 9, 4, 5, 3, 8, 7, 6, 4, 9, 6, 9, 9, 3, 6, 1, 8, 5, 8, 6, 2, 3, 2, 9, 3, 3, 4, 5
OFFSET
0,6
COMMENTS
The Prime Zeta modulo function at 6 for primes of the form 3k+1 is Sum_{primes in A002476} 1/p^6 = 1/7^6 + 1/13^6 + 1/19^6 + 1/31^6 + ...
The complementary Sum_{primes in A003627} 1/p^6 is given by P_{3,2}(6) = A085966 - 1/3^6 - (this value here) = 0.015689614727130461563527666... = A343606.
EXAMPLE
P_{3,1}(6) = 8.7300110231981670120427791452319495610797645391837...*10^-8
MATHEMATICA
With[{s=6}, Do[Print[N[1/2 * Sum[(MoebiusMu[2*n + 1]/(2*n + 1)) * Log[(Zeta[s + 2*n*s]*(Zeta[s + 2*n*s, 1/6] - Zeta[s + 2*n*s, 5/6])) / ((1 + 2^(s + 2*n*s))*(1 + 3^(s + 2*n*s)) * Zeta[2*(1 + 2*n)*s])], {n, 0, m}], 120]], {m, 100, 500, 100}]] (* adopted from Vaclav Kotesovec's code in A175645 *)
PROG
(PARI) s=0; forprimestep(p=1, 1e8, 3, s+=1./p^6); s \\ For illustration: primes up to 10^N give 5N+2 (= 42 for N=8) correct digits.
(PARI) A343626_upto(N=100)={localprec(N+5); digits((PrimeZeta31(6)+1)\.1^N)[^1]} \\ cf. A175644 for PrimeZeta31
CROSSREFS
Cf. A175645, A343624 - A343629 (P_{3,1}(3..9): same for 1/p^n, n=3..9), A343606 (P_{3,2}(6): same for p==2 (mod 3)), A086036 (P_{4,1}(6): same for p==1 (mod 4)).
Cf. A085966 (PrimeZeta(6)), A002476 (primes of the form 3k+1).
Sequence in context: A244839 A329450 A203069 * A272531 A244684 A201742
KEYWORD
cons,nonn
AUTHOR
M. F. Hasler, Apr 23 2021
STATUS
approved