OFFSET
0,2
LINKS
P. Flajolet and I. Vardi, Zeta Function Expansions of Classical Constants, Unpublished manuscript. 1996.
P. Fortuny Ayuso, J. M. Grau, and A. Oller-Marcen, A von Staudt-type formula for sum_{z in Z_n[i]} z^k, arXiv:1402.0333 [math.NT], 2014.
X. Gourdon and P. Sebah, Some Constants from Number theory.
R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo functions..., arXiv:1008.2547 [math.NT], 2010-2015, value P(m=4, s=3, n=3), page 21.
FORMULA
Zeta_R(3) = Sum_{primes p == 3 (mod 4)} 1/p^3
= (1/2)*Sum_{n>=0} mobius(2*n+1)*log(b((2*n+1)*3))/(2*n+1),
where b(x) = (1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function.
EXAMPLE
0.04100755656647303192888654885196002592430006070572381744864564171...
MATHEMATICA
b[x_] = (1 - 2^(-x))*(Zeta[x] / DirichletBeta[x]); $MaxExtraPrecision = 200; m = 40; Prepend[ RealDigits[(1/2)* NSum[MoebiusMu[2n+1]* Log[b[(2n+1)*3]]/(2n+1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]], 0][[1 ;; 105]] (* Jean-François Alcover, Jun 21 2011, updated Mar 14 2018 *)
PROG
(PARI) A085992_upto(N=100)={localprec(N+3); digits((PrimeZeta43(3)+1)\.1^N)[^1]} \\ see A085991 for the PrimeZeta43 function. - M. F. Hasler, Apr 25 2021
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
EXTENSIONS
Edited by M. F. Hasler, Apr 25 2021
STATUS
approved