login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161739
The RSEG2 triangle.
12
1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 0, 13, 10, 1, 0, -4, 30, 73, 20, 1, 0, 0, -14, 425, 273, 35, 1, 0, 120, -504, 1561, 3008, 798, 56, 1, 0, 0, 736, -2856, 25809, 14572, 1974, 84, 1, 0, -12096, 44640, -73520, 125580, 218769, 55060, 4326, 120, 1
OFFSET
0,9
COMMENTS
The EG2[2*m,n] matrix coefficients were introduced in A008955. We discovered that EG2[2m,n] = Sum_{k = 1..n} (-1)^(k+n)*t1(n-1,k-1)*2*eta(2*m-2*n+2*k)/((n-1)!)^2 with t1(n,m) the central factorial numbers A008955 and eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function.
A different way to define these matrix coefficients is EG2[2*m,n] = (1/m)*Sum_{k = 0..m-1} ZETA(2*m-2*k, n-1)*EG2[2*k, n] with ZETA(2*m, n-1) = zeta(2*m) - Sum_{k = 1..n-1} (k)^(-2*m) and EG2[0, n] = 1, for m = 0, 1, 2, ..., and n = 1, 2, 3, ... .
We define the row sums of the EG2 matrix rs(2*m,p) = Sum_{n >= 1} (n^p)*EG2(2*m,n) for p = -2, -1, 0, 1, ... and m >= p+2. We discovered that rs(2*m,p=-2) = 2*eta(2*m+2) = (1 - 2^(1-(2*m+2)))*zeta(2*m+2). This formula is quite unlike the other rs(2*m,p) formulas, see the examples.
The series expansions of the row generators RGEG2(z,2*m) about z = 0 lead to the EG2[2*m,n] coefficients while the series expansions about z = 1 lead to the ZG1[2*m-1,n] coefficients, see the formulas.
The first Maple program gives the triangle coefficients. Adding the second program to the first one gives information about the row sums rs(2*m,p).
The a(n) formulas of the right hand columns are related to sequence A036283, see also A161740 and A161741.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
J. W. Meijer and N.H.G. Baken, The Exponential Integral Distribution, Statistics and Probability Letters, Volume 5, No.3, April 1987. pp 209-211.
FORMULA
RGEG2(2*m,z) = Sum_{n >= 1} EG2[2*m,n]*z^(n-1) = Integral_{y = 0..oo}((2*y)^(2*m)/(2*m)!)* cosh(y)/(cosh(y)^2 - z)^(3/2) for m >= 0.
EG2[2*m,n] = Sum_{k = 1..n} (-1)^(k+n)* A008955(n-1, k-1)*2*eta(2*m-2*n+2*k)/((n-1)!)^2.
ZG1[2*m-1,p+1] = Sum_{j = 0..p} (-1)^j*A008955(p, j)*zeta(2*m-(2*p+1-2*j))/ r(p) with r(p)= p!*(p+1)!/2 and p >= 0.
rs(2*m,p) = Sum_{k = 0..p} A028246(p+1,k+1)*ZG1[2*m-1,k+1] and p >= 0; p <= m-2.
rs(2*m,p) = Sum_{k = 0..p+1} A161739(p+1,k)*zeta(2*m+1-2*k)/q(p+1) with q(p+1) = (p+1)!/2 and p >= -1; p <= m-2.
From Peter Bala, Mar 19 2022: (Start)
It appears that the k-th row polynomial (with indexing starting at k = 1) is given by R(k,n^2) = (k-1)!*Sum_{i = 0..n} (-1)^(n-i)*(i^k)* binomial(n,i)*binomial(n+i,i)/(n+i) for n >= 1.
For example, for k = 6, Maple's SumTools:-Summation procedure gives 5!*Sum_{i = 0..n} (-1)^(n-i)*(i^6)*binomial(n,i)*binomial(n+i,i)/(n+i) = -4*n^2 + 30*n^4 + 73*n^6 + 20*n^8 + n^10 = R(6,n^2). (End)
EXAMPLE
The first few expressions for the ZG1[2*m-1,p+1] coefficients are:
ZG1[2*m-1, 1] = (zeta(2*m-1))/(1/2)
ZG1[2*m-1, 2] = (zeta(2*m-3) - zeta(2*m-1))/1
ZG1[2*m-1, 3] = (zeta(2*m-5) - 5*zeta(2*m-3) + 4*zeta(2*m-1))/6
ZG1[2*m-1, 4] = (zeta(2*m-7) - 14*zeta(2*m-5) + 49*zeta(2*m-3) - 36*zeta(2*m-1))/72
The first few rs(2*m,p) are (m >= p+2)
rs(2*m, p=0) = ZG1[2*m-1,1]
rs(2*m, p=1) = ZG1[2*m-1,1] + ZG1[2*m-1,2]
rs(2*m, p=2) = ZG1[2*m-1,1] + 3*ZG1[2*m-1,2] + 2*ZG1[2*m-1,3]
rs(2*m, p=3) = ZG1[2*m-1,1] + 7*ZG1[2*m-1,2] + 12*ZG1[2*m-1,3] + 6*ZG1[2*m-1,4]
The first few rs(2*m,p) are (m >= p+2)
rs(2*m, p=-1) = zeta(2*m+1)/(1/2)
rs(2*m, p=0) = zeta(2*m-1)/(1/2)
rs(2*m, p=1) = (zeta(2*m-1) + zeta(2*m-3))/1
rs(2*m, p=2) = (zeta(2*m-1) + 4*zeta(2*m-3) + zeta(2*m-5))/3
rs(2*m, p=3) = (0*zeta(2*m-1) + 13*zeta(2*m-3) + 10*zeta(2*m-5) + zeta(2*m-7))/12
The first few rows of the RSEG2 triangle are:
[1]
[0, 1]
[0, 1, 1]
[0, 1, 4, 1]
[0, 0, 13, 10, 1]
[0, -4, 30, 73, 20, 1]
MAPLE
nmax:=10; for n from 0 to nmax do A008955(n, 0) := 1 end do: for n from 0 to nmax do A008955(n, n) := (n!)^2 end do: for n from 1 to nmax do for m from 1 to n-1 do A008955(n, m) := A008955(n-1, m-1)*n^2 + A008955(n-1, m) end do: end do: for n from 1 to nmax do A028246(n, 1) := 1 od: for n from 1 to nmax do A028246(n, n) := (n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do A028246(n, m) := m*A028246(n-1, m) + (m-1)*A028246(n-1, m-1) od: od: for i from 0 to nmax-2 do s(i) := ((i+1)!/2)*sum(A028246(i+1, k1+1)*(sum((-1)^(j)*A008955(k1, j)*2*x^(2*nmax-(2*k1+1-2*j)), j=0..k1)/ (k1!*(k1+1)!)), k1=0..i) od: a(0, 0) := 1: for n from 1 to nmax-1 do for m from 0 to n do a(n, m) := coeff(s(n-1), x, 2*nmax-1-2*m+2) od: od: seq(seq(a(n, m), m=0..n), n=0..nmax-1); for n from 0 to nmax-1 do seq(a(n, m), m=0..n) od;
m:=7: row := 2*m; rs(2*m, -2) := 2*eta(2*m+2); for p from -1 to m-2 do q(p+1) := (p+1)!/2 od: for p from -1 to m-2 do rs(2*m, p) := sum(a(p+1, k)*zeta(2*m+1-2*k), k=0..p+1)/q(p+1) od;
CROSSREFS
A000007, A129825, A161742 and A161743 are the first four left hand columns.
A000012, A000292, A107963, A161740 and A161741 are the first five right hand columns.
A010790 equals 2*r(n) and A054977 equals denom(r(n)).
A001710 equals numer(q(n)) and A141044 equals denom(q(n)).
A000142 equals the row sums.
A008955 is a central factorial number triangle.
A028246 is Worpitzky's triangle.
Sequence in context: A345300 A085992 A117411 * A291574 A094924 A056968
KEYWORD
easy,sign,tabl
AUTHOR
Johannes W. Meijer & Nico Baken (n.h.g.baken(AT)tudelft.nl), Jun 18 2009
EXTENSIONS
Minor error corrected and edited by Johannes W. Meijer, Sep 22 2012
STATUS
approved