login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A161739 The RSEG2 triangle. 12
1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 0, 13, 10, 1, 0, -4, 30, 73, 20, 1, 0, 0, -14, 425, 273, 35, 1, 0, 120, -504, 1561, 3008, 798, 56, 1, 0, 0, 736, -2856, 25809, 14572, 1974, 84, 1, 0, -12096, 44640, -73520, 125580, 218769, 55060, 4326, 120, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

The EG2[2*m,n] matrix coefficients were introduced in A008955. We discovered that EG2[2m,n] = sum((-1)^(k+n)*t1(n-1,k-1)*2*eta(2*m-2*n+2*k)/((n-1)!)^2, k=1..n) with t1(n,m) the central factorial numbers A008955 and eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function.

A different way to define these matrix coefficients is EG2[2*m,n] = (1/m)*sum(ZETA(2*m-2*k, n-1)*EG2[2*k, n],k=0..m-1) with ZETA(2*m, n-1) = zeta(2*m)-sum((k)^(-2*m), k=1..n-1) and EG2[0, n] = 1, for m = 0, 1, 2, .., and n = 1, 2, 3, .. .

We define the row sums of the EG2 matrix rs(2*m,p) = sum((n^p)*EG2(2*m,n), n = 1..infinity) for p = -2, -1, 0, 1, .. and m >= p+2. We discovered that rs(2*m,p=-2) = 2*eta(2*m+2) = (1-2^(1-(2*m+2)))*zeta(2*m+2). This formula is quite unlike the other rs(2*m,p) formulas, see the examples.

The series expansions of the row generators RGEG2(z,2*m) about z = 0 lead to the EG2[2*m,n] coefficients while the series expansions about z = 1 lead to the ZG1[2*m-1,n] coefficients, see the formulas.

The first Maple program gives the triangle coefficients. Adding the second program to the first one gives information about the row sums rs(2*m,p).

The a(n) formulas of the right hand columns are related to sequence A036283, see also A161740 and A161741.

LINKS

Table of n, a(n) for n=0..54.

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.

J. W. Meijer and N.H.G. Baken, The Exponential Integral Distribution, Statistics and Probability Letters, Volume 5, No.3, April 1987. pp 209-211.

FORMULA

RGEG2(2*m,z) = sum(EG2[2*m,n]*z^(n-1), n=1..infinity) = int(((2*y)^(2*m)/(2*m)!)* cosh(y)/(cosh(y)^2-z)^(3/2), y = 0..infinity) for m >= 0.

EG2[2*m,n] = sum((-1)^(k+n)* A008955(n-1, k-1)*2*eta(2*m-2*n+2*k)/((n-1)!)^2, k=1..n)

ZG1[2*m-1,p+1] = sum((-1)^j*A008955(p, j)*zeta(2*m-(2*p+1-2*j)), j = 0..p)/r(p) with r(p)= p!*(p+1)!/2 and p >= 0.

rs(2*m,p) = sum(A028246(p+1,k+1)*ZG1[2*m-1,k+1], k = 0..p) and p >= 0; p <= m-2.

rs(2*m,p) = sum(A161739(p+1,k)*zeta(2*m+1-2*k), k = 0..p+1)/q(p+1) with q(p+1) = (p+1)!/2 and p >= -1; p <= m-2.

EXAMPLE

The first few expressions for the ZG1[2*m-1,p+1] coefficients are:

ZG1[2*m-1, 1] = (zeta(2*m-1))/(1/2)

ZG1[2*m-1, 2] = (zeta(2*m-3) - zeta(2*m-1))/1

ZG1[2*m-1, 3] = (zeta(2*m-5) - 5*zeta(2*m-3) + 4*zeta(2*m-1))/6

ZG1[2*m-1, 4] = (zeta(2*m-7) - 14*zeta(2*m-5) + 49*zeta(2*m-3) - 36*zeta(2*m-1))/72

The first few rs(2*m,p) are (m >= p+2)

rs(2*m, p=0) = ZG1[2*m-1,1]

rs(2*m, p=1) = ZG1[2*m-1,1] + ZG1[2*m-1,2]

rs(2*m, p=2) = ZG1[2*m-1,1] + 3*ZG1[2*m-1,2] + 2*ZG1[2*m-1,3]

rs(2*m, p=3) = ZG1[2*m-1,1] + 7*ZG1[2*m-1,2] + 12*ZG1[2*m-1,3] + 6*ZG1[2*m-1,4]

The first few rs(2*m,p) are (m >= p+2)

rs(2*m, p=-1) = zeta(2*m+1)/(1/2)

rs(2*m, p=0) = zeta(2*m-1)/(1/2)

rs(2*m, p=1) = (zeta(2*m-1) + zeta(2*m-3))/1

rs(2*m, p=2) = (zeta(2*m-1) + 4*zeta(2*m-3) + zeta(2*m-5))/3

rs(2*m, p=3) = (0*zeta(2*m-1) + 13*zeta(2*m-3) + 10*zeta(2*m-5) + zeta(2*m-7))/12

The first few rows of the RSEG2 triangle are:

[1]

[0, 1]

[0, 1, 1]

[0, 1, 4, 1]

[0, 0, 13, 10, 1]

[0, -4, 30, 73, 20, 1]

MAPLE

nmax:=10; for n from 0 to nmax do A008955(n, 0) := 1 end do: for n from 0 to nmax do A008955(n, n) := (n!)^2 end do: for n from 1 to nmax do for m from 1 to n-1 do A008955(n, m) := A008955(n-1, m-1)*n^2 + A008955(n-1, m) end do: end do: for n from 1 to nmax do A028246(n, 1) := 1 od: for n from 1 to nmax do A028246(n, n) := (n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do A028246(n, m) := m*A028246(n-1, m) + (m-1)*A028246(n-1, m-1) od: od: for i from 0 to nmax-2 do s(i) := ((i+1)!/2)*sum(A028246(i+1, k1+1)*(sum((-1)^(j)*A008955(k1, j)*2*x^(2*nmax-(2*k1+1-2*j)), j=0..k1)/ (k1!*(k1+1)!)), k1=0..i) od: a(0, 0) := 1: for n from 1 to nmax-1 do for m from 0 to n do a(n, m) := coeff(s(n-1), x, 2*nmax-1-2*m+2) od: od: seq(seq(a(n, m), m=0..n), n=0..nmax-1); for n from 0 to nmax-1 do seq(a(n, m), m=0..n) od;

m:=7: row := 2*m; rs(2*m, -2) := 2*eta(2*m+2); for p from -1 to m-2 do q(p+1) := (p+1)!/2 od: for p from -1 to m-2 do rs(2*m, p) := sum(a(p+1, k)*zeta(2*m+1-2*k), k=0..p+1)/q(p+1) od;

CROSSREFS

A000007, A129825, A161742 and A161743 are the first four left hand columns.

A000012, A000292, A107963, A161740 and A161741 are the first five right hand columns.

A010790 equals 2*r(n) and A054977 equals denom(r(n)).

A001710 equals numer(q(n)) and A141044 equals denom(q(n)).

A000142 equals the row sums.

A008955 is a central factorial number triangle.

A028246 is Worpitzky's triangle.

Sequence in context: A334702 A085992 A117411 * A291574 A094924 A056968

Adjacent sequences:  A161736 A161737 A161738 * A161740 A161741 A161742

KEYWORD

easy,sign,tabl

AUTHOR

Johannes W. Meijer & Nico Baken (n.h.g.baken(AT)tudelft.nl), Jun 18 2009

EXTENSIONS

Minor error corrected and edited by Johannes W. Meijer, Sep 22 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 4 16:24 EDT 2020. Contains 335448 sequences. (Running on oeis4.)