login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054977 a(0)=2, a(n)=1, n >= 1. 34
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Arises in Gilbreath-Proth conjecture; see A036262.

a(n) is also the continued fraction for (3+sqrt(5))/2. - Enrique Pérez Herrero, May 16 2010

a(n) is also the denominator for odd Bernoulli Numbers. - Enrique Pérez Herrero, Jul 17 2010

a(n) = 3 - A040000(n); a(n) = A182579(n+1,1). - Reinhard Zumkeller, May 07 2012

From Paul Curtz, Feb 04 2014: (Start)

Difference table of a(n):

   2, 1, 1, 1, 1, 1, 1, ...

  -1, 0, 0, 0, 0, 0, 0, ...

   1, 0, 0, 0, 0, 0, 0, ...

  -1, 0, 0, 0, 0, 0, 0, ...

   1, 0, 0, 0, 0, 0, 0, ...

  -1, 0, 0, 0, 0, 0, 0, ... .

a(n) is an autosequence of second kind. Its inverse binomial transform is the signed sequence with the main diagonal (here A000038) double of the following diagonal (here A000007). Here the other diagonals are also A000007.

b(n) = A000032(n) - a(n) = 0, 0, 2, 3, 6, 10, 17, 28, ... = 0, followed by A001610(n) is the autosequence of second kind preceding A000032(n).

The corresponding autosequence of first kind, 0 followed by 1's, is A057427(n).

The Akiyama-Tanigawa transform applied to a(n) yields a(n).

(End)

Harmonic or factorial (base) expansion of e, cf. MathWorld link. - M. F. Hasler, Nov 25 2018

LINKS

Table of n, a(n) for n=0..92.

Daniele A. Gewurz and Francesca Merola, Sequences realized as Parker vectors of oligomorphic permutation groups, J. Integer Seqs., Vol. 6, 2003.

Eric Weisstein's World of Mathematics, Harmonic Expansion

FORMULA

a(n) = A027642(2n+1). - Enrique Pérez Herrero, Jul 17 2010

G.f.: (2-x)/(1-x). - Wolfdieter Lang, Oct 05 2014

Sum_{k>=1} a(n)/n! = exp(1). - G. C. Greubel, Nov 26 2018

MATHEMATICA

A054977[1]:=2;

A054977[n_]:=1; (* Enrique Pérez Herrero, May 16 2010 *)

PadRight[{2}, 120, {1}] (* Harvey P. Dale, Mar 30 2018 *)

PROG

(Haskell)

a054977 0 = 2; a054977 n = 1

a054977_list = 2 : repeat 1  -- Reinhard Zumkeller, May 07 2012

(PARI) a(n)=if(n, 1, 2) \\ Charles R Greathouse IV, Mar 23 2016

(PARI) contfrac((sqrt(5)+3)/2)[^-1] \\ or A068446_vec(30, exp(1)) illustrate that this is the c.f. resp. factoriadic expansion of these two constants. - M. F. Hasler, Nov 28 2018

(MAGMA) ContinuedFraction((1+Sqrt(5))^2/4); // G. C. Greubel, Nov 26 2018

(Sage) continued_fraction(golden_ratio^2) # G. C. Greubel, Nov 26 2018

(Python)

def A054977(n):

    return 1 if n else 2 # Chai Wah Wu, Dec 20 2018

CROSSREFS

Cf. A036262, A054978, A027642, A002445, A174419.

Sequence in context: A299912 A329684 A294619 * A272901 A078315 A346418

Adjacent sequences:  A054974 A054975 A054976 * A054978 A054979 A054980

KEYWORD

nonn,easy,mult

AUTHOR

Henry Gould, May 29 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 2 06:00 EDT 2021. Contains 346409 sequences. (Running on oeis4.)