login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154649
A triangular sequence of coefficients: p(x,n)=((-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(2*m - 1)^n*x^m, {m, 0, Infinity}] + (-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(2*m + 3)^n*x^m, {m, 0, Infinity}])/2.
0
1, 1, 1, 5, -2, 5, 13, 11, 11, 13, 41, 108, 86, 108, 41, 121, 837, 962, 962, 837, 121, 365, 5258, 12163, 10508, 12163, 5258, 365, 1093, 30319, 130965, 160183, 160183, 130965, 30319, 1093, 3281, 165784, 1245980, 2503208, 2485414, 2503208, 1245980, 165784
OFFSET
0,4
COMMENTS
Row sums are:A000165
{1, 2, 8, 48, 384, 3840, 46080, 645120, 10321920, 185794560, 3715891200,...}.
The row sums are equivalent to the MacMahon numbers rows sums.
This results from a modular form bilinear approach summed:
f1(x)=(2*x+3)/(-x); f2(x)=(2*x-1)/(-x).
FORMULA
p(x,n)=((-1)^(-1 + n)* (-1 + x)(1 - n) *((-1)^n+2*n*LerchPhi[x, -n, 1/2])+
(-1)^(-1 + n)* 2^n* (-1 + x)(1 - n) LerchPhi[x, -n, 3/2])/2;
p(x,n)=((-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(2*m - 1)^n*x^m, {m, 0, Infinity}] +
(-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(2*m + 3)^n*x^m, {m, 0, Infinity}])/2;
t(n,m)=coefficients(p(x,n))
EXAMPLE
{1},
{1, 1},
{5, -2, 5},
{13, 11, 11, 13},
{41, 108, 86, 108, 41},
{121, 837, 962, 962, 837, 121},
{365, 5258, 12163, 10508, 12163, 5258, 365},
{1093, 30319, 130965, 160183, 160183, 130965, 30319, 1093},
{3281, 165784, 1245980, 2503208, 2485414, 2503208, 1245980, 165784, 3281},
{9841, 878153, 10863860, 35584772, 45560654, 45560654, 35584772, 10863860, 878153, 9841},
{29525, 4558038, 89180081, 458019464, 852697082, 906922820, 852697082, 458019464, 89180081, 4558038, 29525}
MATHEMATICA
Clear[p]; p[x_, n_] = ((-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(2*m - 1)^n*x^m, {m, 0, Infinity}]
+ (-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(2*m + 3)^n*x^m, {m, 0, Infinity}])/2;
Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}];
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
Flatten[%]
CROSSREFS
KEYWORD
sign,tabl,uned
AUTHOR
Roger L. Bagula, Jan 13 2009
STATUS
approved