login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154652
Triangle read by rows, T(n, k) = binomial(3*(prime(n+1) - 1)/2, 3*(prime(k+1) - 1)/2) with T(n,0) = 1.
2
1, 1, 1, 1, 20, 1, 1, 84, 84, 1, 1, 455, 5005, 5005, 1, 1, 816, 18564, 48620, 816, 1, 1, 2024, 134596, 1307504, 1307504, 134596, 1, 1, 2925, 296010, 4686825, 17383860, 4686825, 2925, 1, 1, 5456, 1107568, 38567100, 1037158320, 1037158320, 38567100, 1107568, 1
OFFSET
0,5
COMMENTS
Row sums are {1, 2, 22, 170, 10467, 68818, 2886226, 27059372, 2153671434, 905636138220, 7579946523936, ...}.
LINKS
A. Lakhtakia, R. Messier, V. K. Varadan, V. V. Varadan, Use of combinatorial algebra for diffusion on fractals, Physical Review A, volume 34, Number 3 (1986) page 2503 (7b).
FORMULA
T(n, k) = binomial(3*(prime(n+1) - 1)/2, 3*(prime(k+1) - 1)/2) with T(n,0) = 1.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 20, 1;
1, 84, 84, 1;
1, 455, 5005, 5005, 1;
1, 816, 18564, 48620, 816, 1;
1, 2024, 134596, 1307504, 1307504, 134596, 1;
1, 2925, 296010, 4686825, 17383860, 4686825, 2925, 1;
MAPLE
seq(seq( `if`(k=0, 1, binomial(3*(ithprime(n+1)-1)/2, 3*(ithprime(k+1)-1)/2) ), k=0..n), n=0..10); # G. C. Greubel, Dec 02 2019
MATHEMATICA
T[n_, k_]:= If[k==0, 1, Binomial[3*(Prime[n+1] -1)/2, 3*(Prime[k+1] -1)/2]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(PARI) T(n, k) = if(k==0, 1, binomial(3*(prime(n+1)-1)/2, 3*(prime(k+1)-1)/2) ); \\ G. C. Greubel, Dec 02 2019
(Magma) [k eq 0 select 1 else Round( Gamma((3*NthPrime(n+1)-1)/2)/( Gamma((3*NthPrime(k+1)-1)/2)*Gamma((3*NthPrime(n+1)-3*NthPrime(k+1))/2 + 1) ) ): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 02 2019
(Sage)
def T(n, k):
if (k==0): return 1
else: return binomial(3*(nth_prime(n+1)-1)/2, 3*(nth_prime(k+1)-1)/2)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 02 2019
CROSSREFS
Cf. A154653.
Sequence in context: A040401 A040400 A139459 * A155516 A174674 A144443
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Jan 13 2009
EXTENSIONS
Edited by G. C. Greubel, Dec 02 2019
STATUS
approved