login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154650
Primes p such that 4*p^2-8*p-9 is a prime.
2
3, 7, 13, 19, 37, 43, 61, 103, 109, 139, 181, 223, 229, 241, 307, 367, 397, 409, 433, 457, 463, 577, 631, 661, 727, 751, 811, 823, 829, 853, 919, 1009, 1063, 1087, 1117, 1213, 1231, 1279, 1291, 1321, 1423, 1429, 1471, 1597, 1609, 1699, 1741, 1753, 1783, 1789
OFFSET
1,1
LINKS
MAPLE
a := proc (n) if isprime(n) = true and isprime(4*n^2-8*n-9) = true then n else end if end proc: seq(a(n), n = 1 .. 2000); # Emeric Deutsch, Jan 27 2009
MATHEMATICA
Select[Prime[Range[200]], PrimeQ[4 #^2 - 8 # - 9] &] (* Vincenzo Librandi, Oct 15 2012 *)
PROG
(Magma) [p: p in PrimesInInterval(2, 2000) | IsPrime(4*p^2 - 8*p - 9) ]; // Vincenzo Librandi, Oct 15 2012
CROSSREFS
Cf. A154648.
Sequence in context: A048977 A216518 A342822 * A015913 A023200 A046136
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 18 2009
EXTENSIONS
Extended by Emeric Deutsch, Jan 27 2009
STATUS
approved