login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A197271
a(n) = (10 / ((3*n+1)*(3*n+2))) * binomial(4*n, n).
6
5, 2, 5, 20, 100, 570, 3542, 23400, 161820, 1159400, 8544965, 64448228, 495508780, 3872033900, 30680401500, 246041115600, 1993987498284, 16310419381080, 134519771966180, 1117653277802000, 9347742311507600, 78652006531467930, 665393840873409150, 5657273782416664200, 48318619683648190500
OFFSET
0,1
COMMENTS
A combinatorial interpretation for this sequence in terms of a family of plane trees is given in [Schaeffer, Corollary 2 with k = 4].
For n>=1, the number of rooted strict triangulations of a square with n-1 internal vertices, where a triangulation is "strict" if no two distinct edges have the same pair of ends. See equation (1) in [Tutte 1980] (who references [Brown 1964]) for the number of rooted strict near-triangulations of type (n,m), with m=1. - Noam Zeilberger, Jan 04 2023
LINKS
William G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768.
W. G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768. [Annotated scanned copy]
K. A. Penson, K. Górska, A. Horzela, and G. H. E. Duchamp, Hausdorff moment problem for combinatorial numbers of Brown and Tutte: exact solution, arXiv:2209.06574 [math.CO], 2022.
William T. Tutte, On the enumeration of convex polyhedra, J. Combin. Theory Ser. B 28 (1980), 105-126.
FORMULA
a(n) = 10/((3*n+1)*(3*n+2))*binomial(4*n,n).
a(n) = A000260(n) * 5*(n+1)/(4*n+1). - Noam Zeilberger, May 20 2019
a(n) ~ c*(256/27)^n / n^(5/2), where c = (10/9)*sqrt(2/(3*Pi)) = 0.511843.... - Peter Luschny, Jan 05 2023
D-finite with recurrence 3*n*(3*n+2)*(3*n+1)*a(n) -8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Jul 31 2024
MATHEMATICA
Table[10/((3n+1)(3n+2)) Binomial[4n, n], {n, 0, 30}] (* Harvey P. Dale, Jan 27 2015 *)
CROSSREFS
Column m=1 of A146305.
Sequence in context: A378873 A154649 A100040 * A248260 A253382 A253384
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Oct 12 2011
STATUS
approved