login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253384
Triangle read by rows: T(n,k) appears in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} T(n,k)*(x+3k)^k.
0
1, -5, 2, -5, -34, 3, -5, 290, -105, 4, -5, -1870, 2055, -236, 5, -5, 10280, -30345, 7864, -445, 6, -5, -50956, 377895, -196256, 22235, -750, 7, -5, 234812, -4194393, 4090264, -824485, 52170, -1169, 8, -5, -1024900, 42834855, -75271592, 25302875, -2669430, 107695, -1720, 9
OFFSET
0,2
COMMENTS
Consider the transformation 1 + 2x + 3x^2 + 4x^3 + ... + (n+1)*x^n = T(n,0)*(x+0)^0 + T(n,1)*(x+3)^1 + T(n,2)*(x+6)^2 + ... + T(n,n)*(x+3n)^n, for n >= 0.
FORMULA
T(n,n) = n + 1, n >= 0.
T(n,n-1) = n - 3*n^2 - 3*n^3, for n >= 1.
T(n,n-2) = (n-1)*(9*n^4 - 9*n^3 - 24*n^2 + 6*n + 2)/2, for n >= 2.
T(n,n-3) = (2-n)*(9*n^6 - 54*n^5 + 63*n^4 + 99*n^3 - 138*n^2 + 9*n + 10)/2, for n >= 3.
EXAMPLE
The triangle T(n,k) starts:
n\k 0 1 2 3 4 5 6 7 ...
0: 1
1: -5 2
2: -5 -34 3
3: -5 290 -105 4
4: -5 -1870 2055 -236 5
5: -5 10280 -30345 7864 -445 6
6: -5 -50956 377895 -196256 22235 -750 7
7: -5 234812 -4194393 4090264 -824485 52170 -1169 8
...
-----------------------------------------------------------------
n = 3: 1 + 2*x + 3*x^2 + 4*x^3 = -5*(x+0)^0 + 290*(x+3)^1 - 105*(x+6)^2 + 4*(x+9)^3.
PROG
(PARI) T(n, k)=(k+1)-sum(i=k+1, n, (3*i)^(i-k)*binomial(i, k)*T(n, i))
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")))
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Derek Orr, Dec 31 2014
EXTENSIONS
Edited; name changed, cross references added. - Wolfdieter Lang, Jan 22 2015
STATUS
approved