OFFSET
0,1
COMMENTS
Row sums are 2, 6, 36, 324, 3888, 58320, 1049760, 22044960, 529079040, 14285134080,
428554022400,...
EXAMPLE
2;
3, 3;
5, 26, 5;
9, 153, 153, 9;
17, 796, 2262, 796, 17;
33, 3951, 25176, 25176, 3951, 33;
65, 19266, 243111, 524876, 243111, 19266, 65;
129, 93477, 2168235, 8760639, 8760639, 2168235, 93477, 129;
257, 453848, 18445820, 127880936, 235517318, 127880936, 18445820, 453848, 257;
MAPLE
A154646 := proc(n, k)
(-1)^(n+1)*(x-1)^(n+1)*add(x^j*((3*j+1)^n+(3*j+2)^n), j=0..k) ;
coeftayl(%, x=0, k) ;
end proc: # R. J. Mathar, Jul 23 2012
MATHEMATICA
Clear[p]; p[x_, n_] = (-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(3*m + 2)^n*x^m, {m, 0, Infinity}]
+ (-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(3*m + 1)^n*x^m, {m, 0, Infinity}];
Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}];
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
Flatten[%]
Contribution from Roger L. Bagula, Nov 27 2009: (Start)
p[t_] = Exp[t]*x/((-Exp[3*t] + x)) + Exp[2*t]*x/((-Exp[3*t] + x));
a = Table[ CoefficientList[FullSimplify[ExpandAll[(n!*(-1 + x)^(n + 1)/x)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], x], {n, 0, 10}];
Flatten[a] (End)
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Jan 13 2009
STATUS
approved