login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154646
Triangle T(n,k) with the coefficient [x^k] of the series (1-x)^(n+1)* sum_{m=0..infinity} [(3*m+1)^n + (3*m+2)^n]*x^m in row n, column k.
3
2, 3, 3, 5, 26, 5, 9, 153, 153, 9, 17, 796, 2262, 796, 17, 33, 3951, 25176, 25176, 3951, 33, 65, 19266, 243111, 524876, 243111, 19266, 65, 129, 93477, 2168235, 8760639, 8760639, 2168235, 93477, 129, 257, 453848, 18445820, 127880936, 235517318
OFFSET
0,1
COMMENTS
Row sums are 2, 6, 36, 324, 3888, 58320, 1049760, 22044960, 529079040, 14285134080,
428554022400,...
EXAMPLE
2;
3, 3;
5, 26, 5;
9, 153, 153, 9;
17, 796, 2262, 796, 17;
33, 3951, 25176, 25176, 3951, 33;
65, 19266, 243111, 524876, 243111, 19266, 65;
129, 93477, 2168235, 8760639, 8760639, 2168235, 93477, 129;
257, 453848, 18445820, 127880936, 235517318, 127880936, 18445820, 453848, 257;
MAPLE
A154646 := proc(n, k)
(-1)^(n+1)*(x-1)^(n+1)*add(x^j*((3*j+1)^n+(3*j+2)^n), j=0..k) ;
coeftayl(%, x=0, k) ;
end proc: # R. J. Mathar, Jul 23 2012
MATHEMATICA
Clear[p]; p[x_, n_] = (-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(3*m + 2)^n*x^m, {m, 0, Infinity}]
+ (-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(3*m + 1)^n*x^m, {m, 0, Infinity}];
Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}];
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
Flatten[%]
Contribution from Roger L. Bagula, Nov 27 2009: (Start)
p[t_] = Exp[t]*x/((-Exp[3*t] + x)) + Exp[2*t]*x/((-Exp[3*t] + x));
a = Table[ CoefficientList[FullSimplify[ExpandAll[(n!*(-1 + x)^(n + 1)/x)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], x], {n, 0, 10}];
Flatten[a] (End)
CROSSREFS
Sequence in context: A270592 A096659 A154695 * A355868 A046826 A323713
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Jan 13 2009
STATUS
approved