login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154695
Triangular sequence defined by T(n, m) = (r^(n-m)*q^m + r^m*q^(n-m))*b(n), where b(n) = coefficients of p(x, n) = 2^n*(1-x)^(n+1) * LerchPhi(x, -n, 1/2), and r=2, q=1.
4
2, 3, 3, 5, 24, 5, 9, 138, 138, 9, 17, 760, 1840, 760, 17, 33, 4266, 20184, 20184, 4266, 33, 65, 24548, 210860, 376768, 210860, 24548, 65, 129, 143814, 2183652, 6233352, 6233352, 2183652, 143814, 129, 257, 851760, 22549616, 99411520, 149600448, 99411520, 22549616, 851760, 257
OFFSET
0,1
LINKS
A. Lakhtakia, R. Messier, V. K. Varadan, V. V. Varadan, Use of combinatorial algebra for diffusion on fractals, Physical Review A, volume 34, Number 3 (1986) p. 2502, Fig. 3.
FORMULA
Let r = 2 and q = 1 then b(n) = the coefficients of p(x, n) = 2^n*(1 - x)^(n + 1)* LerchPhi(x, -n, 1/2). The triangle is then defined by T(n, m) = (r^(n-m)*q^m + r^m*q^(n-m))*b(n).
EXAMPLE
Triangle begins as:
2;
3, 3;
5, 24, 5;
9, 138, 138, 9;
17, 760, 1840, 760, 17;
33, 4266, 20184, 20184, 4266, 33;
65, 24548, 210860, 376768, 210860, 24548, 65;
129, 143814, 2183652, 6233352, 6233352, 2183652, 143814, 129;
MATHEMATICA
r = 2; q = 1; p[x_, n_] = 2^n*(1-x)^(n+1)*LerchPhi[x, -n, 1/2];
b:= Table[CoefficientList[Series[p[x, n], {x, 0, 30}], x], {n, 0, 20}];
T[n_, m_]:= (r^(n-m)*q^m + r^m*q^(n-m))*b[[n+1]][[m+1]];
Table[T[n, m], {n, 0, 12}, {m, 0, n}]//Flatten (* modified by G. C. Greubel, May 08 2019 *)
CROSSREFS
Sequence in context: A064776 A270592 A096659 * A154646 A355868 A046826
KEYWORD
nonn,tabl,less
AUTHOR
EXTENSIONS
Edited by G. C. Greubel, May 08 2019
STATUS
approved