Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jun 03 2023 06:16:19
%S 2,3,3,5,24,5,9,138,138,9,17,760,1840,760,17,33,4266,20184,20184,4266,
%T 33,65,24548,210860,376768,210860,24548,65,129,143814,2183652,6233352,
%U 6233352,2183652,143814,129,257,851760,22549616,99411520,149600448,99411520,22549616,851760,257
%N Triangular sequence defined by T(n, m) = (r^(n-m)*q^m + r^m*q^(n-m))*b(n), where b(n) = coefficients of p(x, n) = 2^n*(1-x)^(n+1) * LerchPhi(x, -n, 1/2), and r=2, q=1.
%H G. C. Greubel, <a href="/A154695/b154695.txt">Rows n = 0..40 of triangle, flattened</a>
%H A. Lakhtakia, R. Messier, V. K. Varadan, V. V. Varadan, <a href="http://dx.doi.org/10.1103/PhysRevA.34.2501">Use of combinatorial algebra for diffusion on fractals</a>, Physical Review A, volume 34, Number 3 (1986) p. 2502, Fig. 3.
%F Let r = 2 and q = 1 then b(n) = the coefficients of p(x, n) = 2^n*(1 - x)^(n + 1)* LerchPhi(x, -n, 1/2). The triangle is then defined by T(n, m) = (r^(n-m)*q^m + r^m*q^(n-m))*b(n).
%e Triangle begins as:
%e 2;
%e 3, 3;
%e 5, 24, 5;
%e 9, 138, 138, 9;
%e 17, 760, 1840, 760, 17;
%e 33, 4266, 20184, 20184, 4266, 33;
%e 65, 24548, 210860, 376768, 210860, 24548, 65;
%e 129, 143814, 2183652, 6233352, 6233352, 2183652, 143814, 129;
%t r = 2; q = 1; p[x_, n_] = 2^n*(1-x)^(n+1)*LerchPhi[x, -n, 1/2];
%t b:= Table[CoefficientList[Series[p[x, n], {x, 0, 30}], x], {n, 0, 20}];
%t T[n_, m_]:= (r^(n-m)*q^m + r^m*q^(n-m))*b[[n+1]][[m+1]];
%t Table[T[n, m], {n, 0, 12}, {m, 0, n}]//Flatten (* modified by _G. C. Greubel_, May 08 2019 *)
%K nonn,tabl,less
%O 0,1
%A _Roger L. Bagula_ and _Gary W. Adamson_, Jan 14 2009
%E Edited by _G. C. Greubel_, May 08 2019