The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A154692 Triangle T(n,m) = (2^(n-m)*3^m + 2^m*3^(n-m))*binomial(n, m) read by rows, 0 <= m <= n. 6
 2, 5, 5, 13, 24, 13, 35, 90, 90, 35, 97, 312, 432, 312, 97, 275, 1050, 1800, 1800, 1050, 275, 793, 3492, 7020, 8640, 7020, 3492, 793, 2315, 11550, 26460, 37800, 37800, 26460, 11550, 2315, 6817, 38064, 97776, 157248, 181440, 157248, 97776, 38064 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Row sums are A020729. LINKS A. Lakhtakia, R. Messier, V. K. Varadan, V. V. Varadan, Use of combinatorial algebra for diffusion on fractals, Physical Review A, volume 34, Number 3 (1986) p. 2502, Fig. 3. FORMULA T(n,m) = A013620(n,m) + A013620(m,n). - R. J. Mathar, Oct 24 2011 EXAMPLE Triangle begins      2;      5,     5;     13,    24,    13;     35,    90,    90,     35;     97,   312,   432,    312,     97;    275,  1050,  1800,   1800,   1050,    275;    793,  3492,  7020,   8640,   7020,   3492,   793;   2315, 11550, 26460,  37800,  37800,  26460, 11550,  2315;   6817, 38064, 97776, 157248, 181440, 157248, 97776, 38064, 6817; MAPLE A154692 := proc(n, m)         (2^(n-m)*3^m+2^m*3^(n-m))*binomial(n, m) ; end proc: seq(seq(A154692(n, m), m=0..n), n=0..10) ; # R. J. Mathar, Oct 24 2011 MATHEMATICA Clear[t, p, q, n, m]; p = 2; q = 3; t[n_, m_] = (p^(n - m)*q^m + p^m*q^(n - m))*Binomial[n, m]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%] CROSSREFS Sequence in context: A326532 A326637 A303355 * A309161 A144293 A174098 Adjacent sequences:  A154689 A154690 A154691 * A154693 A154694 A154695 KEYWORD nonn,tabl,easy AUTHOR Roger L. Bagula and Gary W. Adamson, Jan 14 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 15 04:03 EDT 2021. Contains 343909 sequences. (Running on oeis4.)