login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154690
Triangle read by rows: T(n,m) = (2^(n-m) + 2^m)*binomial(n,m), 0 <= m <= n.
6
2, 3, 3, 5, 8, 5, 9, 18, 18, 9, 17, 40, 48, 40, 17, 33, 90, 120, 120, 90, 33, 65, 204, 300, 320, 300, 204, 65, 129, 462, 756, 840, 840, 756, 462, 129, 257, 1040, 1904, 2240, 2240, 2240, 1904, 1040, 257, 513, 2322, 4752, 6048, 6048, 6048, 6048, 4752, 2322, 513
OFFSET
0,1
COMMENTS
Row sums are A025192(n+1).
LINKS
A. Lakhtakia, R. Messier, V. K. Varadan, V. V. Varadan, Use of combinatorial algebra for diffusion on fractals, Physical Review A, volume 34, Number 3 (1986) p. 2502, Fig. 3.
FORMULA
T(n,m) = A007318(n,m)*(2^(n-m) + 2^m).
EXAMPLE
2;
3, 3;
5, 8, 5;
9, 18, 18, 9;
17, 40, 48, 40, 17;
33, 90, 120, 120, 90, 33;
65, 204, 300, 320, 300, 204, 65;
129, 462, 756, 840, 840, 756, 462, 129;
257, 1040, 1904, 2240, 2240, 2240, 1904, 1040, 257;
513, 2322, 4752, 6048, 6048, 6048, 6048, 4752, 2322, 513;
1025, 5140, 11700, 16320, 16800, 16128, 16800, 16320, 11700, 5140, 1025;
MAPLE
A154690 := proc(n, m) binomial(n, m)*(2^(n-m)+2^m) ; end proc: # R. J. Mathar, Jan 13 2011
MATHEMATICA
t[n_, m_] := (2^(n - m) + 2^m) Binomial[n, m]; Table[ t[n, m], {n, 0, 9}, {m, 0, n}] // Flatten
(* alternate program *)
Table[Table[ Sum[Binomial[n, m]*Binomial[m, k] + Binomial[n, n - m]*Binomial[m, m - k], {k, 0, n}]/2, {m, 0, n}]
+ Reverse[ Table[Sum[ Binomial[n, m]*Binomial[m, k] + Binomial[n, n - m]*Binomial[m, m - k], {k, 0, n}]/2, {m, 0, n}]], {n, 0, 10}] (* Roger L. Bagula, Oct 14 2010 *)
CROSSREFS
Cf. A025192.
Sequence in context: A295379 A295352 A295606 * A046937 A247309 A069831
KEYWORD
nonn,tabl,easy
AUTHOR
STATUS
approved