login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038208
Triangle whose (i,j)-th entry is binomial(i,j)*2^i.
16
1, 2, 2, 4, 8, 4, 8, 24, 24, 8, 16, 64, 96, 64, 16, 32, 160, 320, 320, 160, 32, 64, 384, 960, 1280, 960, 384, 64, 128, 896, 2688, 4480, 4480, 2688, 896, 128, 256, 2048, 7168, 14336, 17920, 14336, 7168, 2048, 256, 512, 4608, 18432, 43008, 64512, 64512, 43008, 18432, 4608, 512
OFFSET
0,2
COMMENTS
Triangle obtained from expansion of (2 + 2*x)^n.
LINKS
Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
Franck Ramaharo, A bracket polynomial for 2-tangle shadows, arXiv:2002.06672 [math.CO], 2020.
FORMULA
E.g.f. for column k: 2^k*x^k/k!*exp(2*x). - Geoffrey Critzer, Feb 13 2014
From G. C. Greubel, Mar 21 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n).
Sum_{k=0..n} T(n, k) = A000302(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A002605(n+1).
Sum_{k=0..floor(n/2)} T(n, k) = 2^n*A027306(n). (End)
EXAMPLE
1;
2, 2;
4, 8, 4;
8, 24, 24, 8;
16, 64, 96, 64, 16;
32, 160, 320, 320, 160, 32;
64, 384, 960, 1280, 960, 384, 64;
128, 896, 2688, 4480, 4480, 2688, 896, 128;
256, 2048, 7168, 14336, 17920, 14336, 7168, 2048, 256;
MATHEMATICA
nn=8; Map[Select[#, #>0&]&, Transpose[Table[Range[0, nn]!CoefficientList[Series[2^k x^k/k! Exp[2x], {x, 0, nn}], x], {k, 0, nn}]]]//Grid (* Geoffrey Critzer, Feb 13 2014 *)
Flatten[Table[Binomial[i, j]2^i, {i, 0, 10}, {j, 0, i}]] (* Harvey P. Dale, May 28 2015 *)
PROG
(PARI) for(n=0, 10, for(k=0, n, print1(binomial(n, k)*2^n, ", "))) \\ G. C. Greubel, Oct 17 2018
(Magma) [Binomial(n, k)*2^n: k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 17 2018
(Sage) flatten([[binomial(n, k)*2^n for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 21 2022
CROSSREFS
Cf. A000079, A000302 (row sums), A002605 (diagonal sums), A027306.
Sequence in context: A317011 A316876 A317604 * A240484 A240636 A281344
KEYWORD
nonn,tabl,easy
STATUS
approved