OFFSET
0,2
COMMENTS
Triangle obtained from expansion of (2 + 2*x)^n.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
Franck Ramaharo, A bracket polynomial for 2-tangle shadows, arXiv:2002.06672 [math.CO], 2020.
FORMULA
E.g.f. for column k: 2^k*x^k/k!*exp(2*x). - Geoffrey Critzer, Feb 13 2014
From G. C. Greubel, Mar 21 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n).
Sum_{k=0..n} T(n, k) = A000302(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A002605(n+1).
Sum_{k=0..floor(n/2)} T(n, k) = 2^n*A027306(n). (End)
EXAMPLE
1;
2, 2;
4, 8, 4;
8, 24, 24, 8;
16, 64, 96, 64, 16;
32, 160, 320, 320, 160, 32;
64, 384, 960, 1280, 960, 384, 64;
128, 896, 2688, 4480, 4480, 2688, 896, 128;
256, 2048, 7168, 14336, 17920, 14336, 7168, 2048, 256;
MATHEMATICA
nn=8; Map[Select[#, #>0&]&, Transpose[Table[Range[0, nn]!CoefficientList[Series[2^k x^k/k! Exp[2x], {x, 0, nn}], x], {k, 0, nn}]]]//Grid (* Geoffrey Critzer, Feb 13 2014 *)
Flatten[Table[Binomial[i, j]2^i, {i, 0, 10}, {j, 0, i}]] (* Harvey P. Dale, May 28 2015 *)
PROG
(PARI) for(n=0, 10, for(k=0, n, print1(binomial(n, k)*2^n, ", "))) \\ G. C. Greubel, Oct 17 2018
(Magma) [Binomial(n, k)*2^n: k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 17 2018
(Sage) flatten([[binomial(n, k)*2^n for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 21 2022
CROSSREFS
KEYWORD
AUTHOR
STATUS
approved