The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038208 Triangle whose (i,j)-th entry is binomial(i,j)*2^i. 16
 1, 2, 2, 4, 8, 4, 8, 24, 24, 8, 16, 64, 96, 64, 16, 32, 160, 320, 320, 160, 32, 64, 384, 960, 1280, 960, 384, 64, 128, 896, 2688, 4480, 4480, 2688, 896, 128, 256, 2048, 7168, 14336, 17920, 14336, 7168, 2048, 256, 512, 4608, 18432, 43008, 64512, 64512, 43008, 18432, 4608, 512 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Triangle obtained from expansion of (2 + 2*x)^n. LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121. Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018. Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018. Franck Ramaharo, A bracket polynomial for 2-tangle shadows, arXiv:2002.06672 [math.CO], 2020. FORMULA E.g.f. for column k: 2^k*x^k/k!*exp(2*x). - Geoffrey Critzer, Feb 13 2014 From G. C. Greubel, Mar 21 2022: (Start) T(n, n-k) = T(n, k). T(n, 0) = A000079(n). Sum_{k=0..n} T(n, k) = A000302(n). Sum_{k=0..floor(n/2)} T(n-k, k) = A002605(n+1). Sum_{k=0..floor(n/2)} T(n, k) = 2^n*A027306(n). (End) EXAMPLE 1; 2, 2; 4, 8, 4; 8, 24, 24, 8; 16, 64, 96, 64, 16; 32, 160, 320, 320, 160, 32; 64, 384, 960, 1280, 960, 384, 64; 128, 896, 2688, 4480, 4480, 2688, 896, 128; 256, 2048, 7168, 14336, 17920, 14336, 7168, 2048, 256; MATHEMATICA nn=8; Map[Select[#, #>0&]&, Transpose[Table[Range[0, nn]!CoefficientList[Series[2^k x^k/k! Exp[2x], {x, 0, nn}], x], {k, 0, nn}]]]//Grid (* Geoffrey Critzer, Feb 13 2014 *) Flatten[Table[Binomial[i, j]2^i, {i, 0, 10}, {j, 0, i}]] (* Harvey P. Dale, May 28 2015 *) PROG (PARI) for(n=0, 10, for(k=0, n, print1(binomial(n, k)*2^n, ", "))) \\ G. C. Greubel, Oct 17 2018 (Magma) [Binomial(n, k)*2^n: k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 17 2018 (Sage) flatten([[binomial(n, k)*2^n for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 21 2022 CROSSREFS Cf. A000079, A000302 (row sums), A002605 (diagonal sums), A027306. Sequence in context: A317011 A316876 A317604 * A240484 A240636 A281344 Adjacent sequences: A038205 A038206 A038207 * A038209 A038210 A038211 KEYWORD nonn,tabl,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 06:00 EST 2022. Contains 358422 sequences. (Running on oeis4.)