|
|
A303355
|
|
Expansion of Product_{k>0} (1+k^2*x^k)^(1/k).
|
|
1
|
|
|
1, 1, 2, 5, 5, 13, 20, 32, -2, 107, 149, 129, -108, -262, 606, 4273, -1001, -1150, -8147, -25864, 1793, 131821, 236852, 170299, -1457515, -1298382, -696074, 4852276, 13381975, 9282183, -31755860, -38912939, -155537309, 238551912, 420017788, 224666693, -1955768303
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/n, g(n) = -n^2.
|
|
LINKS
|
Table of n, a(n) for n=0..36.
|
|
MAPLE
|
seq(coeff(series(mul((1+k^2*x^k)^(1/k), k = 1..n), x, n+1), x, n), n = 0..40); # Muniru A Asiru, Apr 22 2018
|
|
PROG
|
(PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+k^2*x^k)^(1/k)))
|
|
CROSSREFS
|
Cf. A294620, A303354.
Sequence in context: A326452 A326532 A326637 * A154692 A309161 A144293
Adjacent sequences: A303352 A303353 A303354 * A303356 A303357 A303358
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Seiichi Manyama, Apr 22 2018
|
|
STATUS
|
approved
|
|
|
|