|
|
A303356
|
|
Unitary deficient-perfect numbers: unitary deficient numbers n such that 2*n-usigma(n) is a unitary divisor of n, where usigma is the sum of unitary divisors of n (A034448).
|
|
1
|
|
|
1, 2, 10, 12, 120, 4080, 5280, 6720, 17472, 137280, 174720, 908160, 29621760, 31100160, 41879040, 89806080, 99240960, 101391360, 143969280, 226652160, 466794240, 732103680, 760488960, 779412480, 916016640, 918382080, 951498240, 1001172480, 1365450240, 3151948800, 9464663040
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The unitary version of A271816.
|
|
LINKS
|
Table of n, a(n) for n=1..31.
|
|
EXAMPLE
|
120 is in the sequence since 2*120 - usigma(120) = 240 - 216 = 24, and 24 is a unitary divisor of 120.
|
|
MATHEMATICA
|
usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; aQ[n_] := Module[{d}, d=2n-usigma[n]; If[ d<=0, False, Divisible[n, d] && GCD[d, n/d] == 1 ]]; Select[Range[100000], aQ]
|
|
CROSSREFS
|
Cf. A034448, A271816, A303357.
Sequence in context: A055697 A055705 A156430 * A299317 A095914 A189079
Adjacent sequences: A303353 A303354 A303355 * A303357 A303358 A303359
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Amiram Eldar, Apr 22 2018
|
|
EXTENSIONS
|
a(19)-a(31) from Giovanni Resta, Apr 26 2018
|
|
STATUS
|
approved
|
|
|
|